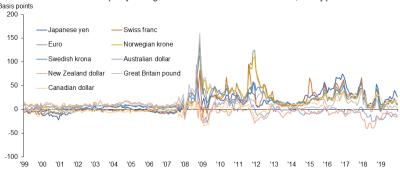
Exchange Rate Determination under Limits to CIP Arbitrage

Philippe Bacchetta

U. of Lausanne Swiss Finance Institute CEPR Scott Davis

Dallas Fed

Eric van Wincoop U. of Virginia NBER


August 2024

4 3 5 4 3 5 5

Financial Segmentation and Limits to Arbitrage

- Increase in market segmentation since 2007. Limited arbitrage has implied deviations from CIP
- Synthetic USD borrowing often more expensive than direct USD borrowing: segmentation between "onshore" and "offshore" dollar markets
- Increases in CIP deviations often associated with "dollar shortages", i.e., an increase in the need for offshore dollars
- Federal Reserve has offered swap lines to alleviate dollar shortages

CIP Deviations

Deviations in covered interest parity among G10 currencies near zero before 2007, mostly positive since Basis points

NOTES: Covered interest parity deviation is the spread between the three-month synthetic dollar borrowing rate (via the swaps market) and the threemonth U.S. dollar LIBOR. The synthetic dollar borrowing rate is the log of the three-month forward exchange rate minus the log of the spot exchange rate plus the three-month local currency interbank rate. SOURCE: Bloomberg.

イロト イヨト イヨト イヨト

Exchange Rates and CIP Deviations

- The recent exchange rate literature has analyzed the impact of limited arbitrage on UIP deviations
 - E.g. Gabaix-Maggiori, Itskhoki-Muhkin
- To what extent do CIP deviations affect exchange rate behavior?
- We extend the recent models by introducing an FX swap market and imperfect CIP arbitrage
- FX swap market is larger than spot market, but is of limited interest when CIP holds
- Few papers link FX swaps (or forward) rates to spot exchange rates
 - Tsiang (1959) and Fang-Liao (2023) in partial equilibrium

イロト 不得 ト イヨト イヨト

Exchange Rates and CIP Deviations

- We propose a model where spot exchange rate and FX swap rate are determined jointly
- How does limited CIP arbitrage affect the response of exchange rates to shocks?
- First, there are "new" shocks that are specific to the swap market. Examples:
 - An increase in the demand for hedged dollar liquid assets
 - A reduction in CIP arbitrage
 - A reallocation from offshore to onshore dollars, leading to dollar shortages
 - Central bank swap lines
- These shocks do not matter when CIP holds

Exchange Rates and CIP Deviations

- Second, the impact of standard shocks to the spot market, e.g., UIP shocks or increase in global demand for USD assets, is amplified
- The implications for some other shocks are more complex
- We propose a simple graphical analysis representing the spot and FX swap markets to analyze these shocks

A Model of Segmented Dollar Markets

- We develop a two-country GE model with market segmentation in the spirit of Gabaix-Maggiori
 - We call the countries US (Home) and Europe (Foreign)
 - Three periods: 0, 1, 2
- Asymmetric setup: full dollar dominance
 - US households only use dollars for their consumption and their assets
 - European households use both dollars and euros
- European households hold dollar liquid assets (money) issued in the US

A Model of Segmented Dollar Markets

- Strong segmentation assumption: households cannot issue foreign currency debt
- But European households can borrow dollars synthetically: borrow euros and get dollar in the swap market
- European households can also possibly borrow dollars from the ECB through Federal Reserve swap lines
- Households do not arbitrage between dollar and euro bonds or between onshore and offshore dollar bonds

8/30

A Model of Segmented Dollar Markets

- There are international UIP and CIP arbitrageurs
- UIP arbitrageurs are "standard"
- CIP arbitrageurs borrow in dollars in the US and provide dollars through the FX swap market: enable synthetic dollar borrowing by European households
- Before 2007, full CIP arbitrage. But limited arbitrage after the GFC

Swap and Spot Markets

- Swap market: European households demand FX swaps to hedge their dollar liquid assets and other exchange rate exposure: D^{\$}_F,
- CIP arbitrageurs supply dollar swaps. Market equilibrium:

$$D_{F,t}^{\$} = B_{CIP,t}^{\$}$$

 Spot market: net demand of European households + UIP arbitrageurs + noise:

$$Q_{F,1}^{\$,spot} + Q_{UIP,1}^{\$,spot} + Q_{noise,1}^{\$,spot} = 0$$

Some Notation

• Synthetic dollar interest rate:

$$1 + i_t^{\$,syn} = \frac{F_t}{S_t} \left(1 + i_t^{€} \right)$$

• CIP deviation:

$$cip_1 = i_t^{\$,syn} - i_t^{\$}$$

• Pre-shock CIP: *cip*

• Interest differential:
$$i^d = i^{\$} - i^{€}$$

< 47 ▶

э

Goods Market

- Agents have CES consumption index of domestic and foreign goods
- Dominant currency: goods produced and consumed in Europe are invoiced in € and other goods are invoiced in \$
- In period 1, prices are sticky in currency of invoicing. In period 2, they are flexible
- Period-2 non-asset income of European agents depends on s_2
- s_2 depend on the stochastic relative supply of Home vs Foreign goods

Money Demand

• Money demand is cash in advance:

$$M_{H,1}^{\$} = \psi C_{H,1}$$

$$M_{F,1}^{\$} = \psi \omega (S_1 P_1^{*})^{\theta} C_{F,1}$$

$$M_{F,1}^{\clubsuit} = \psi (1 - \omega) (P_1^{*})^{\theta} C_{F,1}$$

- European have both euro and dollar money demand. Dollar money demand represents the demand for dollar liquid assets
- Increase in ψ implies an increase in the demand for dollar liquid assets
- For given interest rate and exchange rate, it is fully hedged \Rightarrow impacts the swap market and no impact on the spot market

Households Portfolios

- European households maximize $EC_{F,2} 0.5\gamma var(C_{F,2})$
- Period-2 budget constraint:

$$P_{2}^{*}C_{F,2} = Y_{F,2} + \Pi_{FCB,2} + \frac{1}{S_{2}}M_{F,1}^{\$} + M_{F,1}^{€} + (1+i_{1}^{€})W_{F,1} \\ - \left(\frac{1+i_{1}^{\$,syn}}{S_{2}} - \frac{1+i_{1}^{€}}{S_{1}}\right)D_{F,1}^{\$} - \left(\frac{1+i_{1}^{\$,ECB}}{S_{2}} - \frac{1+i_{1}^{€}}{S_{1}}\right)D_{swap,1}^{\$}$$

Optimal synthetic dollar portfolio:

$$D_{F,1}^{\$} = \rho + M_{F,1}^{\$} - D_{swap,1}^{\$} - \frac{i_1^{\$,syn} - i_1^{€} + s_1}{\gamma\sigma^2}$$

 Increase in dollar money balances leads to one-for-one drop in synthetic dollar positions to hedge exchange rate risk

BDW

August 2024 14 / 30

Other Portfolios

- CIP and UIP arbitrageurs are modeled as in Gabaix-Maggiori with intermediating capacity Γ_{CIP} and Γ_{UIP}
- CIP arbitrageurs:

$$B_{CIP,1}^{\$} = \frac{i_1^{\$,syn} - i_1^{\$}}{\Gamma_{CIP}}$$

• UIP arbitrageurs:

$$B_{UIP,1}^{\notin} = \frac{i_1^{\notin} - i_1^{\#} - s_1}{\Gamma_{UIP}}$$

- Noise traders have exogenous demand $B_{noise,0}^{\in} = 0$ and $B_{noise,1}^{\in} = n_1$
- Spot market equilibrium:

$$CA_{H,1}^{\$} + dM_{F,1}^{\$} - dD_{F,1}^{\$} - D_{swap,1}^{\$} - S_1 dB_{UIP,1}^{€} - S_1 B_{noise,1}^{€} = 0$$

Pre-Shock Equilibrium

• Assume
$$\Gamma_{UIP} = \gamma \sigma^2 = \Gamma$$
 and $\Gamma_{CIP} = \phi \Gamma$

• Let
$$n_1=0$$
 and $ar{D}^\$_{swap}=0$

The CIP deviation is

$$\overline{cip} = \frac{\phi}{1+\phi} \left[\Gamma \left(\bar{M}_F^{\$} + \rho \right) - \overline{i^d} \right]$$

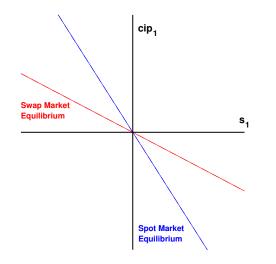
• Synthetic dollar borrowing:

$$ar{D}^{\$}_F = rac{1}{1+\phi} \left(
ho + ar{M}^{\$}_F - rac{ar{l}^d}{\Gamma}
ight)$$

ullet In equilibrium, the hedge ratio is $1/(1+\phi)$ when $\bar{i}^d=0$

• Linearized spot market schedule:

$$v_1 s_1 + cip_1 = shock_1^{spot}$$


- $\nu_1 > 0$: s_1 and cip_1 negatively related in spot market schedule
- When CIP deviation is higher, more costly to hedge \Rightarrow increase in spot demand for dollars $\Rightarrow s_1 \searrow$

Linearized Model

• Linearized swap market schedule:

$$u_2 s_1 + rac{1+\phi}{\phi} {\it cip}_1 = {\it shock}_1^{{\it swap}}$$

- Sign of v_2 ambiguous, but positive with reasonable parameters
- An increase in *cip*₁ reduces demand for synthetic dollar. Compensated by a dollar appreciation to make dollar borrowing more attractive
- Flatter slope of swap market schedule
- When $\phi = 0$, swap market schedule is flat

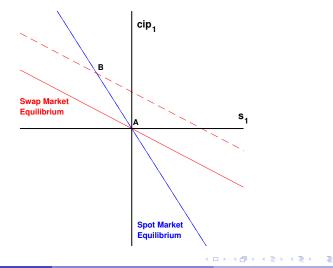
D	n	v	٧/
ъ	υ		۷

æ

イロン イ理 とく ヨン イ ヨン

- Shocks to the FX swap market: no impact when CIP holds
- Shocks affecting only the spot market have standard effect, but the impact on the exchange rate is amplified
- Shocks affecting both markets are more complex

Swap Market Shock


• Swap market shocks:

$$shock_{1}^{swap} = \Gamma \omega \bar{C}_{F,1} \hat{\psi} + \frac{\overline{cip}}{\phi} \frac{\hat{\Gamma}_{CIP}}{\Gamma_{CIP}} - \Gamma \hat{D}_{swap,1}^{\$} + \Gamma \hat{\rho} - \hat{i}_{1}^{d} + \left(\overline{cip} + \bar{i}^{d}\right) \frac{\hat{\Gamma}_{F}}{\Gamma_{F}}$$

- \bullet Shocks in red only affect swap market. Example: "dash for cash", increase in ψ
- Increase in dollar liquidity is hedged \Rightarrow demand for dollar swaps \nearrow . This raises the synthetic dollar interest rate \Rightarrow hedging is more costly
- Europeans use the spot market to exchange euros for dollars. Causes a dollar appreciation

Shock to Swap Market

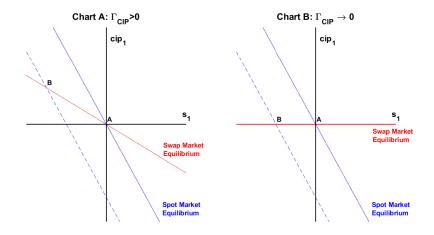
Figure: Rise in ψ or Γ_{CIP}

BDW

22 / 30

Central Bank Swap Lines

- Central bank swap lines between Fed and foreign central banks
- ECB and Fed exchange euros for dollars. ECB then provides dollar liquidity to European agents. At maturity the transaction is reversed
- The swap line increases the supply in the swap market and shifts down the swap market line
- Similar effect with shock to other sources of dollar funding, e.g., Europeans issuing dollar bonds

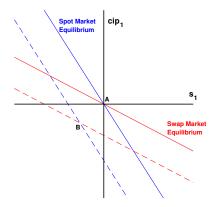

Spot Market Shock

Spot market shocks

$$shock_{1}^{spot} = -\Gamma\hat{n}_{1} + \overline{uip}\frac{\hat{\Gamma}_{UIP}}{\Gamma_{UIP}} + \Gamma\hat{\rho} - 2\hat{i}_{1}^{d} + \left(\overline{cip} + \overline{uip}\right)\frac{\hat{\Gamma}_{F}}{\Gamma_{F}}$$

- Noise shock and UIP arbitrage shocks only affects spot market
- UIP shocks, driven by an increase in noise n_1 or reduction in UIP arbitrage Γ_{UIP} , imply an appreciation. Appreciation is larger with CIP deviations

UIP Shock

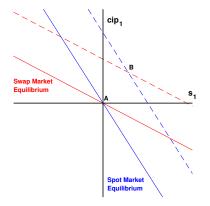

BDW	CIP-ER	August 2024	25 / 30

(ロ) (国) (E) (E) (E) (O)(C)

Monetary Policy Shocks

- Monetary policy shocks (*i^d*) affect both swap and spot market schedules
- Example: monetary contraction in the US, $i^d \nearrow$
- Both curves shift down. Swap market shifts down because synthetic dollar is more expensive (for a given *cip*₁)
- Dollar appreciates but less than without CIP deviations. CIP deviation decreases

Monetary Policy Shock


æ

イロト イヨト イヨト

Currency Hedge Shocks

- Hedging shocks (changes in ρ or $\gamma\sigma^2$) also affect both swap and spot market schedules
- Increase in hedged dollars through swap market reduces demand for spot dollars
- Increase in hedging increases CIP deviation
- But leads to dollar depreciation

Hedging Shock

æ

イロト イヨト イヨト イヨト

Conclusion

- We extend the recent literature by introducing explicitly the FX swap market and limits to CIP arbitrage
- We identify "new" shocks that affect the exchange rate
- We examine how the impact of standard shocks is affected by limited CIP arbitrage
- The framework allows to analyze the impact of central bank swap lines on exchange rates