Dissecting Mechanisms of Financial Crises: Intermediation and Sentiment

Arvind Krishnamurthy¹ Wenhao Li²

¹Stanford Graduate School of Business and NBER

²USC Marshall Business School

August 2024

5th TWID International Finance Conference

Financial (Banking) Crisis Cycles: Mean Path and Severity

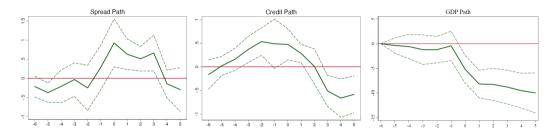


Figure: Mean paths of credit spread, bank credit, and GDP of 44 financial crises, 1870-2014.

Source: Krishnamurthy and Muir (2024); Banking Crises dated by Jorda, Schularick, and Taylor (2011).

Cross-section Crisis Cycle Facts: Severity

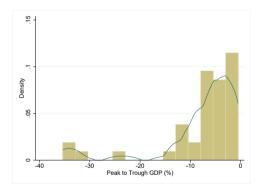


Figure: 3-Year GDP Growth after a Crisis

Conditional on a crisis, we observe:

Left-skewed GDP growth

Larger post-crisis output drop
 More pre-crisis bank credit, or larger in-crisis spike of credit spread.

Crisis Cycle Facts: Predictability and Risk Premium

Predicting crises:

Prob(*Crisis*_{*i*,*t*}|*Credit*_{*i*,*t*-1}, *CreditSpread*_{*i*,*t*-1})

Higher credit growth predicts more crises (Schularick and Taylor 2012) and equity crashes (Baron and Xiong 2017)

- Higher credit growth predicts lower expected excess bond/equity returns (Greenwood and Hanson 2013; Baron and Xiong 2017)
- Low credit spread before crises (Krishnamurthy and Muir 2024)

Matching the crisis cycle

- 1. Financial intermediation
 - Losses reduce bank equity capital, cause disintermedation
 - Credit contraction, output falls, asset prices fall ... amplification mechanism
 - \Rightarrow Matches crisis+ aftermath patterns, given a shock that pushes economy into a crisis
- 2. Beliefs/Sentiment
 - Crises are sharp and need a trigger: news triggers a revaluation of assets.
 - The pre-crisis build-up period is characterized by optimism (or overoptimism?)
 - Bayesian model of beliefs and diagnostic model as in Bordalo, Gennaioli, Shleifer (2018)
 - \Rightarrow Need belief fluctuation to match pre-crisis build-up

Agents and Preferences

> Two agents: bankers and households, optimizing expected log utility.

$$\max \ {\sf E}^{belief} [\int_0^\infty e^{-
ho t} {
m log}(c_t) dt]$$

Bankers raise only demandable debt and inside equity (banker wealth).

▶ Production is through 'A-K' technology. Bank productivity \overline{A} > household productivity \underline{A} .

b Bankers become households at flow rate ηdt .

Capital and shocks

▶ Illiquidity shock dN_t with intensity $\tilde{\lambda}_t$. Brownian shock dB_t . Capital price process:

$$\frac{d\rho_t}{\rho_{t-}} = \mu_t^{\rho} dt + \sigma_t^{\rho} dB_t - \kappa_{t-}^{\rho} dN_t,$$

Investment rate:

$$p_t = \phi'(\mu_t^K) \quad \Rightarrow \quad \mu_t^K = \delta + rac{p_t - 1}{\chi}.$$

Capital accumulation



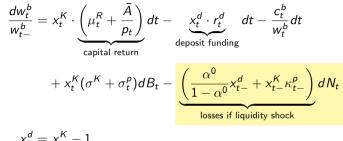
- Illiquidity shock is a pure financial shock; has no direct impact on output or productivity
- dB_t is a Brownian motion representing real/TFP shocks.

Shocks: Interpretation

- llliquidity shock dN_t with **hidden** intensity $\tilde{\lambda}_t$.
- Exogenous shock makes all debtors demand their funds back, and triggers sale of capital
- **Capital liquidation: illiquidity discount** α^0 and endogenous capital price decline.
- High credit + illiquidity shock may lead to a banking crisis:

Prob of crisis \propto Credit $imes ilde{\lambda}_t$

Banker's Optimization Problem, with Log Utility



$$x_t^a = x_t^n -$$

FOC for capital return:

$$E_{t-}[dR_t^b] - r_{t-}^d = \underbrace{(\sigma^K + \sigma_{t-}^p)^2 x_{t-}^K}_{\text{Brownian risk premium}} + \underbrace{\lambda_{t-}(\alpha + \kappa_{t-}^p) \frac{x_{t-}^K \kappa_{t-}^p + \alpha x_{t-}^d}{1 - x_{t-}^K \kappa_{t-}^p - \alpha x_{t-}^d}}_{\text{liquidity risk premium}}$$

Beliefs

- Hidden intensity (unobservable) λ̃_t ∈ {λ_H, λ_L = 0} is a continuous-time Markov process with switching rate λ_{H→L} and λ_{L→H}.
- Observing dN_t for inference. Model differences arise in the expected intensity $E_t^{belief}[\tilde{\lambda}_t]$.

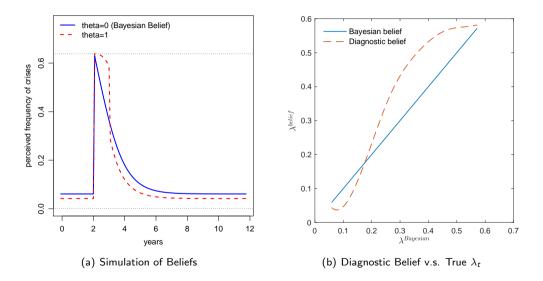
Bayesian filtering problem:

$$d\lambda_t = \begin{pmatrix} (\lambda_L - \lambda_{t-})\lambda_{H \to L} + (\lambda_H - \lambda_{t-})\lambda_{L \to H} \\ -(\lambda_{t-} - \lambda_L)(\lambda_H - \lambda_{t-}) \end{pmatrix} dt + \frac{(\lambda_{t-} - \lambda_L)(\lambda_H - \lambda_{t-})}{\lambda_{t-}} dN_t$$

Diagnostic:

$$\lambda_t^{\theta} = \lambda_L + (\lambda_t - \lambda_L) \frac{(\lambda_H - \lambda_t) + (\lambda_t - \lambda_L)}{\left(\frac{\lambda_t^T - \lambda_L}{\lambda_H - \lambda_t} / \frac{\lambda_t - \lambda_L}{\lambda_H - \lambda_t}\right)^{\theta} (\lambda_H - \lambda_t) + (\lambda_t - \lambda_L)}$$

Beliefs



Aggregate Variables

Share of capital owned by bankers:

$$\psi_t = \frac{x_t^K W_t^b}{x_t^K W_t^b + y_t^K W_t^h}.$$

Aggregate production:

$$Y_t = (\psi_t \overline{A} + (1 - \psi_t) \underline{A}) K_t.$$

Aggregate wealth dynamics:

$$\begin{split} \frac{dW_t^b}{W_{t-}^b} &= \frac{dw_t^b}{w_{t-}^b} - \eta dt \\ \frac{dW_t^h}{W_{t-}^h} &= \frac{dw_t^h}{w_{t-}^h} + \eta \frac{W_{t-}^b}{W_{t-}^h} dt, \\ w_t &= \frac{W_t^b}{W_t^b + W_t^h} \end{split}$$

State Variables and Endogenous Outcomes

- State variables:
 - \blacktriangleright w_t : banker wealth share
 - λ_t (Bayesian) or λ_t^{θ} (Diagnostic): expected intensity of illiquidity shock
 - K_t: scale of the economy (this state variable can be "eliminated")
- Endogenous outcomes:
 - Output: "AK" technology
 - Bank debt (credit): amount of borrowing by the banks.
 - Credit spread: defaultable bond yield safe bond yield.
 - **Crisis:** a period when bank credit growth is below 4% quantile. Not the same as dN_t !

Prob of crisis \propto Credit/GDP imes $ilde{\lambda}_t$

Equilibrium Definition

An equilibrium is a set of functions, including the price of capital $p(w_t, \lambda_t)$, household consumption wealth ratio $\hat{c}^h(w_t, \lambda_t)$ and capital holdings $y^{\kappa}(w_t, \lambda_t)$, banker consumption wealth ratio $\hat{c}^b(w_t, \lambda_t)$ and capital holdings $x^{\kappa}(w_t, \lambda_t)$, such that

Consumption, investment and portfolio choices are optimal.

Capital good market clears

$$W_t^b x_t^K + W_t^h y_t^K = p_t K_t.$$

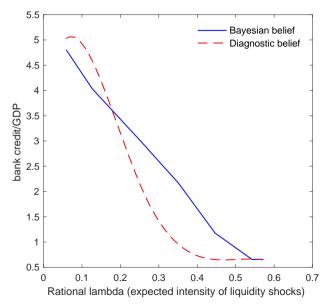
The aggregate wealth equals to total value of capital

$$W_t^b + W_t^h = p_t K_t.$$

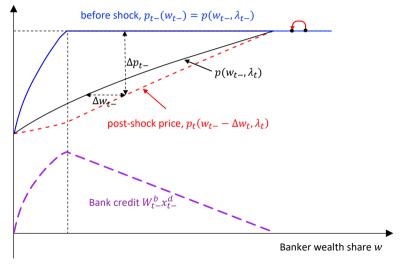
Consumption goods market clears

$$\hat{c}_t^b W_t^b + \hat{c}_t^h W_t^h = (\psi_t \bar{A} + (1 - \psi_t) \underline{A}) \mathcal{K}_t - i_t \mathcal{K}_t.$$

Belief Mechanism



Financial Amplification Mechanism



Model Calibration Strategy

▶ We evaluate three versions of the model.

- Static belief model: no belief variation.
- Rational model: Bayesian belief.
- Diagnostic model: diagnostic belief.

▶ We separately solve parameters for each model to match the same targets.

- Targets: average output declines in a crisis, frequency of liquidity shocks ···
- Cross-section results are not targeted and used to evaluate.

Important Model Targets

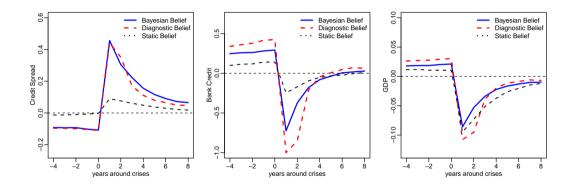
- 1. Avg 3-year output drop of -9% in financial crises (Schularick and Taylor 2011) $ightarrow ar{A} A$
 - Where "financial crisis" \equiv bank credit growth in worst 4% quantile of distribution
- 2. Average bank leverage of 5 (flow of funds) $ightarrow \eta$

- 3. Frequency of illiquidity events = 13% (liquidity premium) \rightarrow $E[\lambda]$
- 4. Average spike in credit spread in a crisis = 0.7 σ s (Krishnamurthy and Muir 2020) $\rightarrow \lambda_{H \rightarrow L}$
- 5. Half-life of credit spread recovery = 2.5 years (Krishnamurthy and Muir 2020) $\rightarrow \lambda_{L \rightarrow H}$
- 6. Diagnostic parameter (Bordalo, Gennaioli, Shleifer, 2018) ightarrow heta = 0.9

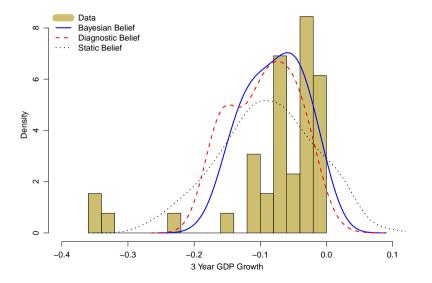
Estimated Parameters

	Parameter	Static	Bayesian	Diagnostic
Avg frequency of liquidity shock	$ar{\lambda}$	0.072	_	_
High intensity of liquidity shock	λ_H	-	0.561	0.638
Low to high transition	$\lambda_{L \to H}$	-	0.11	0.11
High to low transition	$\lambda_{H \to L}$	-	0.47	0.48
Household productivity	A_L	0.12	0.17	0.13
Bank lending advantage	$A_H - A_L$	0.055	0.030	0.024
Volatility of capital growth	σ^{K}	0.06	0.03	0.03
Banker-household transition rate	η	0.122	0.055	0.034

Mean paths (X Static, \checkmark Bayesian, \checkmark Diagnostic)



Cross-section: Left-Skewed Distribution of Severity $\checkmark \checkmark \checkmark$



Severity of Crises, Bank Credit, and Credit Spread $\checkmark \checkmark \checkmark$

Intermediation mechanism is enough.

	Dependent variable: GDP Growth from t to $t + 3$							
	Static Belief		Bayesian		Diagnostic		Data	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Δ credit spread _t *crisis _t	-4.88		-2.87		-3.44		-2.11 (0.16)	
$\left(\frac{\text{bank credit}}{\text{GDP}}\right)_t * \text{crisis}_t$		-0.98		-2.18		-3.49		-2.06 (0.30)
Observations							641	641

Note: Model and data regressions are normalized so that the coefficients reflect the impact of one sigma change in spreads, and bank credit/GDP.

Bank Credit and Risk Premium $\sqrt{\sqrt{\sqrt{2}}}$

Matched well across models. Reason: all driven by variation in credit supply.

		Dependent variable: Excess return $_{t+1}$				
	Static Belief	Bayesian	Diagnostic	Data		
$\left(\frac{\text{bank credit}}{\text{GDP}}\right)_t$	-0.01	-0.01	-0.02	- 0.02 (0.01)		
Observations				867		

Note: Model excess return is defined as the return to capital minus the risk-free rate. Data excess return is from Online Appendix Table 3 of Baron and Xiong (2017). To ensure comparability, the model return to capital has been normalized to equal the standard deviation of returns reported by Baron and Xiong (2017).

Pre-Crisis Low Credit Spread $X \checkmark \checkmark$

- ▶ Krishnamurthy and Muir (2024): credit spread is unusually low in the pre-crisis period
- Static belief model fails to match pre-crisis spreads. Sign is wrong!

	De	Dependent variable: credit spread _t			
	Static Belief	Bayesian	Diagnostic	Data	
	(1)	(2)	(3)	(4)	
pre-crisis indicator	0.25	-0.25	-0.30	- 0.44 (0.15)	
Observations				634	

Note: regression is: $s_t = \alpha + \beta \cdot 1\{t \text{ is within 5-year window before a crisis}\} + controls.$ For both model and data, controls include an indicator of within 5 years after the last crisis. Data regression has more controls such as country fixed effect.

Pre-Crisis Mechanism $X \checkmark \checkmark$

Why the static-belief model fails?

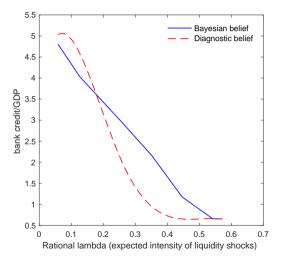
- one state variable w
 - * crises more likely
 - $\Leftrightarrow \ \text{higher bank leverage and fragility}$
 - \Leftrightarrow higher risk premium

Pre-Crisis Mechanism $X \checkmark \checkmark$

Why the static-belief model fails?

- one state variable w
 - * crises more likely
 - $\Leftrightarrow \ \text{higher bank leverage and fragility}$
 - ⇔ higher risk premium

Why the Bayesian model works?



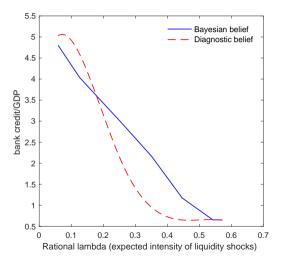
Pre-Crisis Mechanism $X \checkmark \checkmark$

Why the static-belief model fails?

- one state variable w
 - * crises more likely
 - $\Leftrightarrow \ \text{higher bank leverage and fragility}$
 - ⇔ higher risk premium

Why the Bayesian model works?

Key: slope of the risk taking – belief relationship.



Predicting crises using high credit

Prob of crisis \propto Credit $imes ilde{\lambda}_t$

Predicting crisis is a race between two effects: As $\tilde{\lambda}_t$ falls:

- ln both Bayesian and Diagnostic belief models, credit is inversely related to $\tilde{\lambda}$.
- Slope is higher in diagnostic model...
- But the effects play out qualitatively similarly

Predicting Crises in Model and Data

			Depende	nt variat	ole: crisis	5_{t+1} to $t+1$	5	
	Static Belief		Bayesian		Diagnostic		Data	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$Froth_t o crisis(next 3 years)$	-5.94		5.67		7.40		12.90	
$(rac{\mathrm{bank}\ \mathrm{credit}}{\mathrm{GDP}})_t ightarrow \mathrm{crisis}(\mathrm{next}\ \mathrm{year})$		0.13		4.05		3.85		2.11
Observations							604	1272

Note: HighFroth measures if spreads have been abnormally low in the last 5 years. HighCredit measures if credit growth has been abnormally high in the last 3 years.

Crisis Predictability from Model Simulation

In both Bayesian and diagnostic models, there is strong crisis predictability. Broadly consistent with Greenwood et al (2022), "Predictable financial crises."

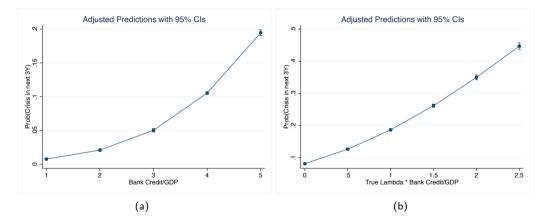


Figure: Bayesian Model, Probability of Crisis over next 3 years, by Quintile

Summary

- This paper bridges the quantitative nonlinear macro-finance models with the empirical crisis literature.
 - Non-linear macro-finance models: Mendoza (2010), He-Krishnamurthy (2013), Brunnermeier-Sannikov (2014), Gertler-Kiyotaki-Prestipino (2019)
 - Empirical crisis literature: Bordo et. al. (2002), Reinhart-Rogoff (2009), Jorda, Schularick, Taylor (2011), Schularick-Taylor (2012), Baron-Xiong (2017), Baron-Verner-Xiong (2021), Krishnamurthy-Muir (2020)
- Financial amplification mechanism is necessary
- Belief variation is necessary. Diagnostic vs. Bayesian, less important for asset price/macro targets.
 - Models of opacity can drive sudden shifts in beliefs (Gorton-Ordonez, 2013; Dang, Gorton, Holmstrom, 2020)
 - Or, models of extrapolative expectations (Bordalo, Gennaioli, Shleifer, 2018)