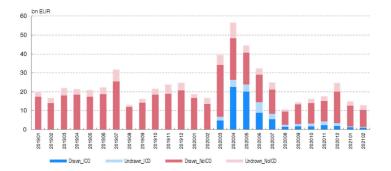
Banks vs. Firms: Who Benefits from Credit Guarantees?

Alberto Martin CREI, UPF, BSE Sergio Mayordomo Banco de España Victoria Vanasco CREI, UPF, BSE

July 2024

<ロト < 部ト < 目ト < 目ト 目 のへで 1/34


Introduction

- Public credit guarantee schemes are widely used to support private credit.
- On March 2020, Spain implemented the ICO COVID19 loan guarantee program:
 - Coverage up to 60-80% of financing losses for creditors.
 - Maturity: up to 5 years with grace up to 12 months (later extended).
 - Eligibility: new loans, excluding firms in arrears, delinquency, or bankruptcy.
 - Allocated through banks.
- Motivation? Help firms cover liquidity needs during the pandemic.
 - Prevent inefficient firm closures/liquidations.

ICO program was significant...

• New credit granted in March-July 2020 doubled that of March-July 2019.

- 40% of this new credit had guarantees.
- ▶ By mid-2022, almost 18% of the total stock of credit had guarantees.

Size and maturity of ICO loans

• On average, ICO loans are longer, larger and have lower interest rates.

This paper

- Questions: when banks are in charge of allocating public credit guarantees ...
 - Which firms are most likely to obtain guaranteed loans?
 - How are the benefits of guarantees split between firms and banks?
 - How (in)efficient is the bank allocation of guarantees?
- What we do:
 - Propose a stylized model to think about these questions.
 - Test predictions with the ICO program using Spanish data.

The model in one slide

• Two periods, $t = \{0, 1\}$, and one consumption good.

• Mass one of risk-neutral entrepreneurs indexed by {A, b}.

- At t = 0, legacy debt b ~ G and an investment project.
 - Project requires k units of investment, otherwise liquidated at λ.
- At t = 1, project yields A ~ Fwith probability p (and zero otherwise).
 p determined by non-contractible cost C (p) with C'(·), C''(·) > 0

• Continuum of competitive risk-neutral banks that provide t = 0 credit at $R_f = 1$.

- If banks grant credit b + k, project A continues.
- Otherwise, project A is liquidated and banks obtain max{λ, b}.

The model in one slide

- Two periods, $t = \{0, 1\}$, and one consumption good.
- Mass one of risk-neutral entrepreneurs indexed by $\{A, b\}$.
 - At t = 0, legacy debt $b \sim G$ and an investment project.
 - Project requires k units of investment, otherwise liquidated at λ .
 - At t = 1, project yields $A \sim F$ with probability p (and zero otherwise).
 - p determined by non-contractible cost C(p) with $C'(\cdot), C''(\cdot) > 0$.

• Continuum of competitive risk-neutral banks that provide t = 0 credit at $R_f = 1$.

- lf banks grant credit b + k, project A continues.
- Otherwise, project A is liquidated and banks obtain $\max{\lambda, b}$.

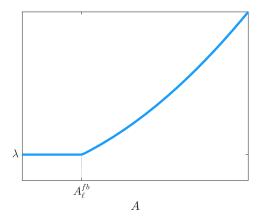
The model in one slide

- Two periods, $t = \{0, 1\}$, and one consumption good.
- Mass one of risk-neutral entrepreneurs indexed by $\{A, b\}$.
 - At t = 0, legacy debt $b \sim G$ and an investment project.
 - Project requires k units of investment, otherwise liquidated at λ .
 - At t = 1, project yields $A \sim F$ with probability p (and zero otherwise).
 - p determined by non-contractible cost C (p) with C'(·), C''(·) > 0.
- Continuum of competitive risk-neutral banks that provide t = 0 credit at $R_f = 1$.
 - If banks grant credit b + k, project A continues.
 - Otherwise, project A is liquidated and banks obtain $\max{\lambda, b}$.

First-best allocation

• All productive projects are continued:

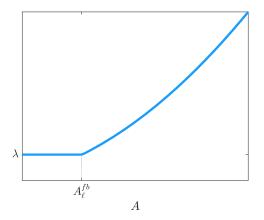
$$\max_{p} \quad p \cdot A - C(p) - k \ge \lambda \iff A \ge A_{\ell}^{fb}$$


• Success probabilities p_A^{fb} implicitly given by:

$$A=C'(p_A^{fb})$$
, for $A\geq A_\ell^{fb}$

and increasing in project productivity A.

• Legacy debts, *b*, are irrelevant.


First-best allocation: surplus

Equilibrium allocations? Distorted due to non-contractible effort and borrowing:

- Legacy debt obligations, b.
- Investment, k.

First-best allocation: surplus

- Equilibrium allocations? Distorted due to non-contractible effort and borrowing:
 - Legacy debt obligations, b.
 - Investment, k.

A credit contract for an entrepreneur of type {A, b} stipulates a repayment B_{A,b} to be paid in the event of success for a loan of b + k.

The bank's expected revenue from such contract equals

 $p_A(B_{A,b}) \cdot B_{A,b}$

where $p_A(B_{A,b})$ is the incentive compatible effort given the offered contract, i.e.:

$$A-B_{A,b}=C'(p_A)$$

• We can think of contract $B_{A,b}$ as providing loan b + k at interest rate

$$R_{A,b}=\frac{B_{A,b}}{b+k}.$$

For simplicity, suppose entrepreneurs owe b to one bank.

<ロト < 部ト < 言ト < 言ト こ のへで 9/34

- A credit contract for an entrepreneur of type {A, b} stipulates a repayment B_{A,b} to be paid in the event of success for a loan of b + k.
- The bank's expected revenue from such contract equals

$$p_A(B_{A,b}) \cdot B_{A,b}$$

where $p_A(B_{A,b})$ is the incentive compatible effort given the offered contract, i.e.:

$$A-B_{A,b}=C'(p_A)$$

• We can think of contract B_{A,b} as providing loan b + k at interest rate

$$R_{A,b}=\frac{B_{A,b}}{b+k}.$$

For simplicity, suppose entrepreneurs owe b to one bank.

<ロ > < 部 > < 言 > < 言 > こ つ へ () 9/34

- A credit contract for an entrepreneur of type {A, b} stipulates a repayment B_{A,b} to be paid in the event of success for a loan of b + k.
- The bank's expected revenue from such contract equals

$$p_A(B_{A,b}) \cdot B_{A,b}$$

where $p_A(B_{A,b})$ is the incentive compatible effort given the offered contract, i.e.:

$$A - B_{A,b} = C'(p_A)$$

• We can think of contract $B_{A,b}$ as providing loan b + k at interest rate

$$R_{A,b}=\frac{B_{A,b}}{b+k}.$$

For simplicity, suppose entrepreneurs owe b to one bank.

<ロ > < 団 > < 臣 > < 臣 > 三 の Q () 9/34

- A credit contract for an entrepreneur of type {A, b} stipulates a repayment B_{A,b} to be paid in the event of success for a loan of b + k.
- The bank's expected revenue from such contract equals

$$p_A(B_{A,b}) \cdot B_{A,b}$$

where $p_A(B_{A,b})$ is the incentive compatible effort given the offered contract, i.e.:

$$A - B_{A,b} = C'(p_A)$$

• We can think of contract $B_{A,b}$ as providing loan b + k at interest rate

$$R_{A,b} = \frac{B_{A,b}}{b+k}$$

• For simplicity, suppose entrepreneurs owe b to one bank.

- Competition is modeled as follows:
 - 1. Competitive banks post contracts for each type of entrepreneur $\{A, b\}$.
 - 2. Entrepreneurs can renegotiate their debts with their creditor bank.
 - Nash bargaining, with bank bargaining power $\gamma \in [0, 1]$.
 - 3. Entrepreneurs choose a contract from competitive banks or creditor bank.
 - If an entrepreneur fails to obtain credit, she is liquidated.

Two useful concepts

• The maximum debt repayment of entrepreneur with productivity A, denoted by \vec{B}_A , is defined as

$$ar{B}_A = rgmax_B p_A \cdot B$$

s.t. $A - B = C'(p_A)$

with $\bar{p}_A \equiv C'^{-1} \left(A - \bar{B}_A \right)$.

• The minimum debt repayment of entrepreneur with productivity A, denoted by \underline{B}_A , is defined as

$$\begin{array}{ll} \underline{B}_{A}: & \max_{B,p} & p \cdot (A-B) - c \left(p \right) \\ & s.t. & p \cdot B \geq \lambda + k \end{array}$$

with $\underline{p}_A \equiv C'^{-1} (A - \underline{B}_A)$.

There exist thresholds $A_{\ell}(b)$ and $A_{h}(b)$, both weakly increasing in *b*, such that an entrepreneur of type $\{A, b\}$ is:

1. Solvent: $\bar{p}_A \cdot \bar{B}_A \ge b + k \iff A \ge A_h(b)$, borrows b + k from competitive banks, with

$$B_{A,b}^* = rac{b+k}{p_A(B_{A,b}^*)} \qquad \qquad R_{A,b}^* = rac{1}{p_A(B_{A,b}^*)}.$$

2. Captive: $\bar{p}_A \cdot B_A \in [\lambda + k, b + k) \iff A \in [A_\ell(b), A_h(b))$, borrows b + k from creditor bank, with

$$B_{A,b}^* = w(\gamma) \cdot \bar{B}_A + (1 - w(\gamma)) \cdot \underline{B}_A \qquad \qquad R_{A,b}^* = \frac{B_{A,b}}{b + k} < \frac{1}{p_s(B_{s,c}^*)},$$

where w is increasing in γ , which reflects bank bargaining power

3. Insolvent: $ar{
ho}_A \cdot ar{R}_A < \lambda + k$, projects are liquidated.

There exist thresholds $A_{\ell}(b)$ and $A_{h}(b)$, both weakly increasing in *b*, such that an entrepreneur of type $\{A, b\}$ is:

1. Solvent: $\bar{p}_A \cdot \bar{B}_A \ge b + k \iff A \ge A_b(b)$, borrows b + k from competitive banks, with

$$B_{A,b}^* = rac{b+k}{p_A(B_{A,b}^*)}$$
 $R_{A,b}^* = rac{1}{p_A(B_{A,b}^*)}.$

2. Captive: $\bar{p}_A \cdot \bar{B}_A \in [\lambda + k, b + k) \iff A \in [A_\ell(b), A_h(b))$, borrows b + k from creditor bank, with

$$B^*_{A,b} = w(\gamma) \cdot \bar{B}_A + (1 - w(\gamma)) \cdot \underline{B}_A \qquad \qquad R^*_{A,b} = \frac{B^*_{A,b}}{b + k} < \frac{1}{p_A(B^*_{A,b})},$$

where w is increasing in γ , which reflects bank bargaining power.

3. Insolvent: $ar{p}_A \cdot R_A < \lambda + k$, projects are liquidated.

There exist thresholds $A_{\ell}(b)$ and $A_{h}(b)$, both weakly increasing in *b*, such that an entrepreneur of type $\{A, b\}$ is:

1. Solvent: $\bar{p}_A \cdot \bar{B}_A \ge b + k \iff A \ge A_b(b)$, borrows b + k from competitive banks, with

$$B_{A,b}^* = rac{b+k}{p_A(B_{A,b}^*)} \qquad \qquad R_{A,b}^* = rac{1}{p_A(B_{A,b}^*)}.$$

2. Captive: $\bar{p}_A \cdot \bar{B}_A \in [\lambda + k, b + k) \iff A \in [A_\ell(b), A_h(b))$, borrows b + k from creditor bank, with

$$B^*_{A,b}=w(\gamma)\cdotar{B}_A+(1-w(\gamma))\cdot \underline{B}_A \qquad \qquad R^*_{A,b}=rac{B^*_{A,b}}{b+k}<rac{1}{p_A(B^*_{A,b})},$$

where w is increasing in γ , which reflects bank bargaining power.

3. Insolvent: $\bar{p}_A \cdot \bar{R}_A < \lambda + k$, projects are liquidated.

Equilibrium Surplus

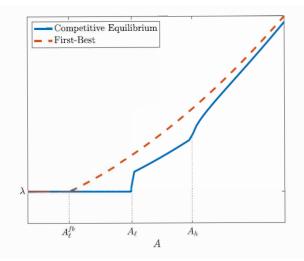


Figure: Social surplus of entrepreneur with productivity A. Competitive equilibrium vs. first-best ($\gamma = 1$)

Equilibrium allocations

- Competitive equilibrium is inefficient along two margins:
 - Too many liquidations $(A_{\ell}(\cdot) > A_{\ell}^{fb})$.
 - ▶ Conditional on continuation, too little effort $(p_A < p_A^{fb}, \forall A \ge A_{\ell}(\cdot))$.
- Along both margins, inefficiency is increasing in *b*.
- What do credit guarantees do in this setting?

Government guarantees

- Guarantees (x): cover loan capital in case of entrepreneurial failure.
- Simplifying assumption: cannot be applied to rolled-over debt, $x \in [0, k]$.
- Total \bar{X} guarantees allocated through banks.
- How do banks allocate guarantees? They can
 - Include in renegotiation with captive entrepreneurs.
 - Offer to solvent entrepreneurs in the competitive credit market.

The role of credit guarantees

• A credit contract is a pair $\{B_{A,b}, x_{A,b}\}$, which generates expected revenue: $p_A(B_{A,b}) \cdot B_{A,b} + (1 - p_A(B_{A,b})) \cdot x_{A,b}$,

• It is useful to define the shadow price of guarantees, ho

- Captures banks' opportunity cost of granting guarantees.
- For now, take as given, but it is an equilibrium object (more below)
- Entrepreneurs with $1 \rho_A(B_{A,b}) \ge \rho$ receive full guarantee, $x_{A,b} = k$.

The role of credit guarantees

• A credit contract is a pair $\{B_{A,b}, x_{A,b}\}$, which generates expected revenue:

$$p_A(B_{A,b}) \cdot B_{A,b} + (1 - p_A(B_{A,b})) \cdot x_{A,b},$$

- It is useful to define the shadow price of guarantees, ρ .
 - Captures banks' opportunity cost of granting guarantees.
 - For now, take as given, but it is an equilibrium object (more below)
 - Entrepreneurs with $1 p_A(B_{A,b}) \ge \rho$ receive full guarantee, $x_{A,b} = k$.

Two useful concepts

• The maximum debt repayment with guarantees of entrepreneur with productivity A, denoted by \overline{B}_A^g , is the repayment entailed by contract that maximizes the bank's expected revenues s.t. entrepreneur's incentive constraint. Formally,

$$ar{B}^{g}_{A} = rg\max_{B} p_{A} \cdot B + (1 - p_{A}) \cdot k$$

s.t. $A - B = C'(p_{A})$

with $\bar{p}_A^g \equiv C'^{-1} \left(A - \bar{B}_A^g \right)$.

The minimum debt repayment with guarantees of entrepreneur with productivity A, denoted by <u>B</u>^E_A, is the repayment entailed by contract that maximizes the entrepreneur's expected revenues s.t. bank's participation constraint. Formally,

$$\begin{array}{ll} \underline{B}_{A}^{g}: & \max_{B,\rho} & p \cdot (A-B) - c\left(p\right) \\ & s.t. & p \cdot B + (1-p-\rho) \cdot k \geq \lambda + k \end{array}$$

with $\underline{p}_A^g \equiv C'^{-1} (A - \underline{B}_A^g)$.

Given shadow price of guarantees ρ , there exist thresholds $A_{\ell}^{g}(b,\rho)$ and $A_{h}^{g}(b,\rho)$, both weakly increasing in b and ρ , such that entrepreneurs with:

1. $A \ge A_{h}^{g}(b, \rho)$ are solvent and borrow b + k from competitive banks, with

$$B_{A,b}^{g} = \frac{b + \min\{p_{A}(B_{A,b}^{g}) + \rho, 1\} \cdot k}{p_{A}(B_{A,b}^{g})}, \qquad x_{A,b}^{g} = k \cdot \mathcal{I}(1 - p_{A}(B_{A,b}^{g}) \ge \rho)$$

2. $A \in [A_{\ell}^{g}(b, \rho), A_{h}^{g}(b, \rho))$ are captive and borrow b + k from creditor bank with

$$B_{A,b}^{g} = w^{g}(\gamma) \cdot \bar{B}_{A}^{g} + (1 - w^{g}(\gamma)) \cdot \underline{B}_{A}^{g}, \qquad x_{A,b}^{g} = k \cdot \mathcal{I}(1 - p_{A}(B_{A,b}^{g}) \geq \rho)$$

3. $A < A_{\ell}^{g}(b, \rho)$ are insolvent and their project is liquidated.

- Banks do not pass on the full benefits of guarantees to entrepreneurs.
- Expected payments of solvent entrepreneurs fall by $1 \rho \rho$.
- If bank has some bargaining power (γ > 0), expected payments of captive entrepreneurs fall by *less* than 1 − ρ − ρ.
 - Bank appropriates higher share of guarantees.
 - Pass-through may even be negative when $\gamma = 1$, as $\bar{B}_A^g > \bar{B}_A!$
- In equilibrium, banks follow a pecking order:
 - Grant guarantees to riskier borrowers and, among these, to captive ones.
 - Banks may keep alive projects with NPV < 0!</p>
 - Allocation of guarantees is distorted relative to social planner (not today)

- Banks do not pass on the full benefits of guarantees to entrepreneurs.
- Expected payments of solvent entrepreneurs fall by $1 p \rho$.
- If bank has some bargaining power ($\gamma > 0$), expected payments of captive entrepreneurs fall by less than $1 p \rho$.
 - Bank appropriates higher share of guarantees.
 - Pass-through may even be negative when $\gamma = 1$, as $\bar{B}^g_A > \bar{B}_A$!
- In equilibrium, banks follow a pecking order:
 - Grant guarantees to riskier borrowers and, among these, to captive ones.
 - Banks may keep alive projects with NPV < 0!</p>
 - Allocation of guarantees is distorted relative to social planner (not today)

- Banks do not pass on the full benefits of guarantees to entrepreneurs.
- Expected payments of solvent entrepreneurs fall by $1 p \rho$.
- If bank has some bargaining power ($\gamma > 0$), expected payments of captive entrepreneurs fall by *less* than $1 p \rho$.
 - Bank appropriates higher share of guarantees.
 - ▶ Pass-through may even be negative when $\gamma = 1$, as $\bar{B}_A^g > \bar{B}_A$!
- In equilibrium, banks follow a pecking order:
 - Grant guarantees to riskier borrowers and, among these, to captive ones.
 - Banks may keep alive projects with NPV < 0!</p>
 - Allocation of guarantees is distorted relative to social planner (not today)

- Banks do not pass on the full benefits of guarantees to entrepreneurs.
- Expected payments of solvent entrepreneurs fall by 1 − p − ρ.
- If bank has some bargaining power ($\gamma > 0$), expected payments of captive entrepreneurs fall by *less* than $1 p \rho$.
 - Bank appropriates higher share of guarantees.
 - ▶ Pass-through may even be negative when $\gamma = 1$, as $\bar{B}_A^g > \bar{B}_A!$
- In equilibrium, banks follow a pecking order:
 - Grant guarantees to riskier borrowers and, among these, to captive ones.
 - ▶ Banks may keep alive projects with NPV < 0!
 - Allocation of guarantees is distorted relative to social planner (not today)

Who benefits from credit guarantees?

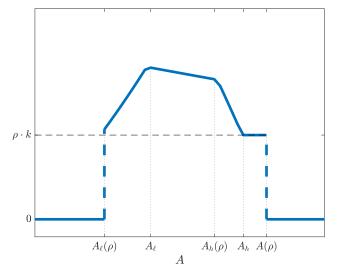
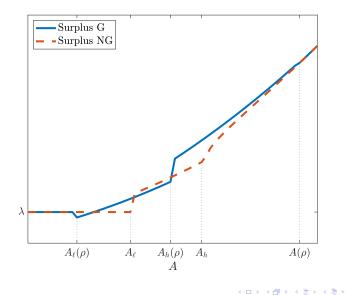
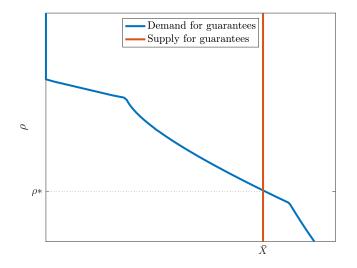



Figure: Banks' extra revenues from granting guaranteed credit in equilibrium ($\gamma = 1$).


20 / 34

Mixed effect of guarantees on surplus

21 / 34

How is ρ determined?

< □ > < 部 > < 差 > < 差 > 差 の < や 22/34

Social Planner's Problem

- Let $\pi^*_{A,b}$ denote bank surplus from lending to entrepreneur $\{A, b\}$ with x = 0.
- The planner's problem is as follows:

$$\max_{\{\mathcal{I},B,x\}_{\{A,b\}}}\int\int \left[(p_A\cdot A-C(p_A)-k)\cdot\mathcal{I}_{A,b}+\lambda\cdot(1-\mathcal{I}_{A,b})\right]\cdot dF(A)\cdot dG(b)$$

s.t.
$$\begin{aligned} A - B_{A,b} &= C'(p_A), \quad \forall A, b\\ & [p_A \cdot B_{A,b} + (1-p_A) \cdot x_{A,b} - k] \cdot \mathcal{I}_{A,b} + \lambda \cdot (1-\mathcal{I}_{A,b}) \geq \pi^*_{A,b}, \quad \forall A, b \end{aligned}$$

$$\int\int x_{A,b}\cdot dF(A)dG(b)=\bar{X}.$$

Sources of inefficiency

• The social mg benefit of granting guarantee $x_{A,b}^{p}$ to entrepreneurs A, b

$$MB_{A,b}(x_{A,b}^{p}) \equiv (A - C'(p_{A}(B_{A,b}^{p}))) \cdot \underbrace{\frac{1 - p_{A}(B_{A,b}^{p})}{C''(p_{A}(B_{A,b}^{p})) \cdot p_{A}(B_{A,b}^{p}) + x_{A,b}^{p} - B_{A,b}^{p}}_{=\frac{dp_{A}}{dx_{A,b}^{p}}}.$$

The planner's solution highlights the distortions in the CE,

1

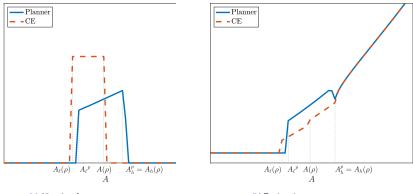
- 1. Banks prioritize the size of the transfer (high $1 \rho_A$) and how much they can extract from it (captive entrepreneurs/market power).
- 2. Planner prioritizes reductions in repayments and thus increased effort, $\frac{dp_A}{dx_{A,b}}$, of entrepreneurs with high social marginal surplus, A C'(A) > 0.

Sources of inefficiency

• The social mg benefit of granting guarantee $x_{A,b}^p$ to entrepreneurs A, b

$$MB_{A,b}(x_{A,b}^{p}) \equiv (A - C'(p_{A}(B_{A,b}^{p}))) \cdot \underbrace{\frac{1 - p_{A}(B_{A,b}^{p})}{C''(p_{A}(B_{A,b}^{p})) \cdot p_{A}(B_{A,b}^{p}) + x_{A,b}^{p} - B_{A,b}^{p}}_{=\frac{dp_{A}}{dx_{A,b}^{p}}}$$

- The planner's solution highlights the distortions in the CE,
 - 1. Banks prioritize the size of the transfer (high $1 p_A$) and how much they can extract from it (captive entrepreneurs/market power).
 - 2. Planner prioritizes reductions in repayments and thus increased effort, $\frac{dp_A}{dx_{A,b}}$ of entrepreneurs with high social marginal surplus, A C'(A) > 0.


Sources of inefficiency

• The social mg benefit of granting guarantee $x_{A,b}^p$ to entrepreneurs A, b

$$MB_{A,b}(x_{A,b}^{p}) \equiv (A - C'(p_{A}(B_{A,b}^{p}))) \cdot \underbrace{\frac{1 - p_{A}(B_{A,b}^{p})}{C''(p_{A}(B_{A,b}^{p})) \cdot p_{A}(B_{A,b}^{p}) + x_{A,b}^{p} - B_{A,b}^{p}}_{=\frac{dp_{A}}{dx_{A,b}^{p}}}$$

- The planner's solution highlights the distortions in the CE,
 - 1. Banks prioritize the size of the transfer (high $1 p_A$) and how much they can extract from it (captive entrepreneurs/market power).
 - 2. Planner prioritizes reductions in repayments and thus increased effort, $\frac{dp_A}{dx_{A,b}}$, of entrepreneurs with high social marginal surplus, A C'(A) > 0.

Allocation of guarantees: planner vs CE

(b) Total surplus

Empirical Predictions

Are the implications of the model consistent with data?

- Riskier firms are more likely to receive ICO credit.
- Allocation of ICO credit to "captive" and non-captive firms.
 - Especially when banks have high bargaining power.
- Terms of access to ICO credit by captive firms.
 - Lower pass-through than for solvent firms.

Data

- Banco de España Central Credit Register
- Central Balance Sheet Data Office Survey
- Sample
 - Consists of 233,796 eligible NFC.
 - Obtained new credit over the period March 2020 February 2021.
 - Around 1M of loans with information on various characteristics.
 - 384,581 bank firm relationships

Fact 1: ICO credit went primarily to risky firms

• Dependent variable: new credit with guarantees as a share of total new credit

Dep var: ICO/Total credit				
	(1)	(2)	(3)	(4)
Risky (PD>1%)	0.048*** [0.003]			0.037*** [0.003]
Affected sector		0.072***		0.072***
		[0.002]		[0.002]
High liquidity needs			0.020***	0.009***
			[0.002]	[0.002]
Observations	222 706	222 706	222 706	022 706
Observations	233,796	233,796	233,796	233,796
R-squared	0.104	0.106	0.102	0.109
Firm Controls	YES	YES	YES	YES
Location-Size FE	YES	YES	YES	YES

Table: Firms' access to ICO loans. The dependent variable is the ratio of the total amount of new ICO loans obtained by a given firm during the period March 2020 to February 2021 over the total amount of new loans (ICO and non-ICO loans) obtained during the same period and it is regressed on a series of variables that proxy for firms' risk.

Fact 2: allocation of ICO credit to captive firms

- A firm is captive of a given bank if:
 - It has a relationship with that bank immediately before the pandemic.
 - It is risky: PD > 1% on 12/19 (i.e., loans not accepted by Eurosystem as eligible collateral).
- 20% of firms in our sample are captive according to this definition.

Fact 2: allocation of ICO credit to captive firms

Dep var: ICO/Total credit			
	(1)	(2)	(3)
	All	Profitable	NonProfitable
Captive firm	0.035*** [0.005]	0.038*** [0.012]	0.024 [0.015]
Observations	295,080	117,798	21,478
R-squared	0.525	0.548	0.571
ILSR FE	YES	YES	YES
Bank FE	YES	YES	YES

Fact 3: interest rate pass-through on ICO credit

• Lower pass-through on ICO loans for captive firms

Dep var: Interest rate (%)					
	(1)	(2)	(3)	(4)	
	ÂŰ	ÂŰ	Àff	Àff	
ICO Loan (a)	-0.357**	-0.409***	-0.434**	-0.504**	
	[0.155]	[0.154]	[0.210]	[0.201]	
Captive firm x ICO Loan (b)	[01200]	0.161***	[0.220]	0.312***	
		[0.039]		[0.076]	
Captive firm		0.118**		0.060	
		[0.053]		[0.167]	
Observations	978,884	978,884	109,901	109,901	
R-squared	0.580	0.580	0.624	0.624	
ILSRT FE	YES	YES	YES	YES	
Bank-Time FE	YES	YES	YES	YES	
Loan Controls	YES	YES	YES	YES	
(a) + (b)		0.248		0.192	
		[0.158]		[0.242]	

31 / 34

What have we done?

- Develop model to study how banks allocate guarantees/split surplus with firms
 - Banks allocate guarantees to their riskier borrowers first.
 - Among these, allocate guarantees first to "captive" borrowers first.
 - Not all borrowers benefit equally from guarantees (captives benefit less!).
 - Banks' allocation of guarantees is constrained-inefficient.
- Spanish data is consistent with the model:
 - Captive firms in affected sectors receive higher share of ICO credit...
 - ... yet they benefit less from rate reduction of ICO loans.

Credit to captive borrowers

Dep var: ICO/Total credit			
· · ·	(1)	(2)	(3)
Captive (Baseline)	0.031*** [0.008]		
Captive (Main bank)		0.014***	
		[0.004]	
Captive (Bank with share $>$ 50%)			0.014** [0.006]
			[0.000]
Observations	186,538	186,538	186,538
R-squared	0.468	0.468	0.468
ILSR FE	YES	YES	YES
Bank FE	YES	YES	YES

Role of risk and relationship lending

Dep var: ICO/Total credit		
	(1)	(2)
	All	Affected
Captive firm	0.031***	0.036**
	[0.007]	[0.015]
Risky (PD $> 1\%$)	0.001	-0.006
	[0.007]	[0.015]
Previous bank-firm relationship	-0.010***	-0.003
	[0.004]	[0.007]
Observations	207,353	38,731
R-squared	0.427	0.387
ILST FE	YES	YES
Bank FE	YES	YES