A Behavioral Explanation for the Puzzling Persistence of the Aggregate Real Exchange Rate

Mario J. Crucini,¹ Mototsugu Shintani,² and Takayuki Tsuruga³

¹Purdue University

²The University of Tokyo

³Osaka University

5th TWID International Finance Conference August 6-7, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The <u>L</u>aw-of-<u>O</u>ne-<u>P</u>rice and <u>P</u>urchasing <u>P</u>ower <u>P</u>arity ► LOP

$$\frac{S_t P_{\text{beer},t}^*}{P_{\text{beer},t}} = 1$$

where S_t is the nominal exchange rate, * denotes "foreign"

$$\frac{S_t P_t^*}{P_t} = 1$$

where P_t and P_t^* are CPIs of home and foreign countries

The Law-of-One-Price and Purchasing Power Parity

LOP deviations (or good-level RER)

$$\frac{S_t P_{\text{beer},t}^*}{P_{\text{beer},t}} = q_{it} \neq 1$$

where S_t is the nominal exchange rate, * denotes "foreign"

PPP deviations (aggregate RER)

$$\frac{S_t P_t^*}{P_t} = q_t \neq 1$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where P_t and P_t^* are CPIs of home and foreign countries

In reality, LOP & PPP do not hold

PPP puzzle 1

PPP deviations are extremely persistent

 too persistent to be explained by reasonable degree of nominal price rigidities (Rogoff 1996)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Half-life = 3-5 years

PPP puzzle 2

LOP deviations are much less persistent than PPP deviations

▶ Half-life (≃ 1.2 year) is lower than that of q_t (3-5 years)
 ▶ Imbs, Mumtaz, Ravn and Rey (2005), Crucini and Shintani (2008), Carvalho and Nechio (2011)

Research questions

- Q1: Does the behavioral inattention model help to solve the PPP puzzle?
 - We consider a behavioral model of inattention ("sparse-based model") by Gabaix (2014, 2020)
 - Gabaix (2014, 2020) discusses models with attention parameter m:

m = 1 (if agents are fully attentive) m < 1 (if agents are inattentive)

We introduce *m* into the model of LOP deviations used in Crucini, Shintani and Tsuruga (2010a, 2010b, 2013, 2015)

Q2: Do micro price data support the behavioral inattention?

Theoretical finding

- Q1: Does the behavioral inattention model help to solve the PPP puzzle?
- A1: Yes
 - We derive the relationship between LOP deviations and PPP deviations
 - lf m = 1

$$\ln q_{it} = \lambda \ln q_{it-1} + e_t + e_{it}$$

(λ: the degree of price stickiness, e: iid shocks)
▶ If m < 1

$$\ln q_{it} = \lambda \ln q_{it-1} + (1-m)(1-\lambda) \ln q_t + e_t + e_{it}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Complementarity generates persistence of *q_t* and *q_{it}*

Theoretical finding

- Q1: Does the behavioral inattention model help to solve the PPP puzzle?
- A1: Yes
 - We derive the relationship between LOP deviations and PPP deviations
 - $\blacktriangleright \text{ If } m = 1$

$$\ln q_{it} = \lambda \ln q_{it-1} + e_t + e_{it}$$

(*λ*: the degree of price stickiness, *e*: iid shocks)
▶ If *m* < 1

$$\ln q_{it} = \lambda \ln q_{it-1} + (1-m)(1-\lambda) \ln q_t + e_t + e_{it}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Complementarity generates persistence of q_t and q_{it}

Complementarity

$$\ln q_{it} = \lambda \ln q_{it-1} + e_t + e_{it}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• No complementarities if m = 1

Complementarity

$$\ln q_{it} = \lambda \ln q_{it-1} + (1-m)(1-\lambda) \ln q_t + e_t + e_{it}$$

• Compelementarity generates slow aggregate real exchange rate if m < 1

Empirical findings

Q2: Do micro price data support the behavioral inattention?

A2: Yes

 We test the model of LOP deviations with behavioral inattention

Competing Hypotheses

 $egin{array}{rcl} H_0 & : & m=1 \mbox{ (fully attentive)} \ H_1 & : & m<1 \mbox{ (inattentive)} \end{array}$

• $H_0: m = 1$ is strongly rejected by the data

- Our estimates of m are m = 0.11 0.25
- Under the estimated m, the model explains the PPP puzzle

• With
$$m = 1$$
 (full attention)

	Model $(m = 1)$	Model $(m < 1)$	Data
Aggregate	e real exchange rate	es (PPP deviations)	
Half-life	0.6		2.4-4.9
Good-leve	el real exchange rat	es (LOP deviations)	
Half-life	0.6		1.2-1.6

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• With
$$m = 1$$
 (full attention)

	Model $(m = 1)$	Model $(m < 1)$	Data
Aggregate	e real exchange rate	es (PPP deviations)	
Half-life	0.6		2.4-4.9
Good-leve	l real exchange rat	es (LOP deviations)	
Half-life	0.6		1.2-1.6

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• With
$$m = 1$$
 (full attention)

	Model $(m = 1)$	Model $(m < 1)$	Data
Aggregate	real exchange rate	s (PPP deviations)	
Half-life	0.6		2.4-4.9
Good-leve	l real exchange rate	es (LOP deviations)	
Half-life	0.6		1.2-1.6

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• With m = 0.1 (behavioral inattention)

	Model $(m = 1)$	Model $(m < 1)$	Data
Aggregate	e real exchange rate	es (PPP deviations)	
Half-life	0.6	2.5-3.7	2.4-4.9
Good-leve	el real exchange rat	es (LOP deviations)	
Half-life	0.6	1.0-1.2	1.2-1.6

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A simple model of inattention

- 2 steps
 - 1. Rational firm's profit function (log-approximated to the second order)

$$\max_{\hat{p}} \pi(\hat{p}, \hat{p}^{opt}) = \max_{\hat{p}} \left[-\frac{c}{2} \left(\hat{p} - \hat{p}^{opt} \right)^2 \right]$$

 \hat{p} : firm's actual price, \hat{p}^{opt} : the optimal price (in terms of log-deviations), c: constant

The rational agent's optimal price

$$\hat{p} = \hat{p}^{opt}$$

2. Behavioral agents replaces $\pi(\hat{p}, \hat{p}^{opt})$ with "attention augmented profit function"

$$\max_{\hat{p}} \widetilde{\pi}(\hat{p}, \hat{p}^{opt}, m) = \max_{\hat{p}} \left[-\frac{c}{2} \left(\hat{p} - m \hat{p}^{opt} \right)^2 \right]$$

In a special case with m = 1, π̃ (p̂, p̂^{opt}, 1) = π (p̂, p̂^{opt})
 The action becomes choice of m

$$\hat{p}(m) = m\hat{p}^{opt}$$

A simple model of inattention

- 2 steps
 - 1. Rational firm's profit function (log-approximated to the second order)

$$\max_{\hat{p}} \pi(\hat{p}, \hat{p}^{opt}) = \max_{\hat{p}} \left[-\frac{c}{2} \left(\hat{p} - \hat{p}^{opt} \right)^2 \right]$$

 \hat{p} : firm's actual price, \hat{p}^{opt} : the optimal price (in terms of log-deviations), c: constant

The rational agent's optimal price

$$\hat{p} = \hat{p}^{opt}$$

2. Behavioral agents replaces $\pi\left(\hat{p},\hat{p}^{opt}\right)$ with "attention augmented profit function"

$$\max_{\hat{p}} \widetilde{\pi}(\hat{p}, \hat{p}^{opt}, m) = \max_{\hat{p}} \left[-\frac{c}{2} \left(\hat{p} - m \hat{p}^{opt} \right)^2 \right]$$

▶ In a special case with m = 1, $\tilde{\pi}(\hat{p}, \hat{p}^{opt}, 1) = \pi(\hat{p}, \hat{p}^{opt})$ ▶ The action becomes ♦ choice of m

$$\hat{p}(m) = m\hat{p}^{opt}$$

Choice of attention

▶ How do firms determine *m*?

The degree of attention can be endogeneized by solving

$$\max_{m \in [0,1]} \mathbb{E} \left[\pi(\hat{p}(m), \hat{p}^{opt}) - \mathcal{C}(m) \right]$$
$$= \max_{m \in [0,1]} \mathbb{E} \left[-\frac{c}{2} (\hat{p}(m) - \hat{p}^{opt})^2 - \mathcal{C}(m) \right]$$

where $\mathcal{C}(m)$ is a cost of paying attention

Trade-off

- Benefit: correction of distorted action
- Cost: paying attention

Overview of the model

 Follows Kehoe and Midrigan (2007), Crucini, Shintani and Tsuruga (2010, 2013)

Households

• $U(c_t, n_t) = \ln c_t - \chi n_t$ • max. problem

Firms

- Set prices in monopolistically competitive market (Home and Foreign, local currency pricing) CES
- Calvo pricing with its parameter λ
- Use technology: $y_{it}(z) = a_{it}n_{it}(z)$
- Must pay trade cost to send goods from a country to the other resources
- We introduce Gabaix's behavioral inattention to price setting
 Governments

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Control money supply

Rational firms' pricing: step 1

Home firm's pricing under full attention

$$\hat{p}_{Hit} = (1 - \lambda \delta) \mathbb{E}_t \sum_{k=0}^{\infty} (\lambda \delta)^k (\widehat{mc}_{Hit+k})$$
$$\hat{p}^*_{Hit} = (1 - \lambda \delta) \mathbb{E}_t \sum_{k=0}^{\infty} (\lambda \delta)^k (\widehat{mc}^*_{Hit+k})$$

where all variables are the log-deviations, p_{Hit} : relative price of good *i*, a_{it} : productivity, δ : discount factor,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

•
$$\hat{p}^*_{Fit}$$
 and \hat{p}_{Fit} are analogously derived

Behavioral firms' pricing: step 2

Home firm's pricing under behavioral inattention

$$\hat{p}_{Hit}(m_H) = (1 - \lambda \delta) \mathbb{E}_t \sum_{k=0}^{\infty} (\lambda \delta)^k (m_H \widehat{mc}_{Hit+k})$$
$$\hat{p}^*_{Hit}(m^*_H) = (1 - \lambda \delta) \mathbb{E}_t \sum_{k=0}^{\infty} (\lambda \delta)^k (m^*_H \widehat{mc}^*_{Hit+k})$$

• $\hat{p}_{Fit}^*(m_F^*)$ and $\hat{p}_{Fit}(m_F)$ are analogously derived

The optimal (relative) prices are insensitive to the aggregate shocks • price index

Proposition 1

Under the preferences given by $U(c, n) = \ln c - \chi n$, the CIA constraints, the stochastic processes of money supply, the stochastic processes of the labor productivity, and the Calvo pricing with the degree of price stickiness $\lambda \in (0, 1)$, the stochastic process of the good-level real exchange rate is given by:

$$\ln q_{it} = \lambda \ln q_{it-1} + (1-m)(1-\lambda) \ln q_t + \lambda \varepsilon_t^n + \psi \varepsilon_{it}^r$$

where

- ▶ $m \in (0,1]$: the degree of attention, $m = \omega m_H + (1-\omega)m_F$
- ψ : param. for real frictions (> 0 with trade cost)
- ε_t^n : nominal shock, $\varepsilon_t^n = \Delta \ln S_t \sim i.i.d.(0, \sigma_n^2)$

•
$$\varepsilon_{it}^{r}$$
: real shock, $\varepsilon_{it}^{r} = (\varepsilon_{it} - \varepsilon_{it}^{*}) \sim i.i.d.(0, \sigma_{r}^{2})$

Takeaway: Direct relationship between $\ln q_{it}$ and $\ln q_t$

Testable implication of behavioral LOP

We define modified LOP deviations *q̃_{it}* and PPP deviations *q̃_t*

$$\underbrace{\ln q_{it} - \lambda \ln q_{it-1} - \lambda \varepsilon_t^n}_{\ln \tilde{q}_{it}} = (1 - m) \underbrace{(1 - \lambda) \ln q_t}_{\ln \tilde{q}_t} + \underbrace{\psi \varepsilon_{it}^r}_{u_{it}}$$

where we replace ε_t^n by $\Delta \ln S_t$

We can use this regression as a test for full attention

$$\ln \widetilde{q}_{it} = \alpha + \beta \ln \widetilde{q}_t + u_{it},$$

The null hypothesis of full attention (H₀ : m = 1 or β = 0) is significantly rejected in favor of behavioral inattention

- We use the annual micro price data of US-Canadian city pairs and UK-Euro city pairs
 - The Worldwide Cost of Living Survey by Economic Intelligence Unit
 - Our regression has variations in three dimensions

ln q_{ijt}

- 274 goods (i)
- 17 US cities and 4 Canadian cities = 68 city pairs (j)
- (or 19 Euro cities and 2 UK cities = 38 city pairs (j))

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

26 years from 1990 to 2015 (t)

Test for behavioral inattention (US-Canada)

Modified RER with common λ

$$\ln \widetilde{q}_{ijt} = \alpha_{ij} + \beta \ln \widetilde{q}_t + \gamma' X_{ijt} + u_{ijt}$$

	(1)	(2)	(3)	(4)
$ln \tilde{q}_t$	0.844***	0.802***	0.812***	0.806***
	(0.030)	(0.028)	(0.029)	(0.029)
# of Obs.	389,500	389,500	389,500	389,500
city-pairs FE	Ν	Y	N	Y
Control for productivity	Ν	Ν	Y	Y
ŵ	0.156	0.198	0.188	0.194

Note: *10% significance level, **5% significance level, ***1% significance level. For λ , the median value of the degrees of price stickiness ($\lambda = 0.34$) is used. All specifications include the fixed effect at the good level. The standard errors are clustered by goods.

Test for behavioral inattention (UK–Euro)

Modified RER with common λ

$$\ln \widetilde{q}_{ijt} = \alpha_{ij} + \beta \ln \widetilde{q}_t + \gamma' X_{ijt} + u_{ijt}$$

	(1)	(2)	(3)	(4)
$ln \tilde{q}_t$	0.856***	0.851***	0.853***	0.868***
	(0.042)	(0.043)	(0.042)	(0.042)
# of Obs.	214,115	214,115	213,064	213,064
city-pairs FE	Ν	Y	N	Y
Control for productivity	Ν	Ν	Y	Y
ŵ	0.144	0.149	0.147	0.132

Note: *10% significance level, **5% significance level, ***1% significance level. For λ , the median value of the degrees of price stickiness ($\lambda = 0.34$) is used. All specifications include the fixed effect at the good level. The standard errors are clustered by goods.

Test for behavioral inattention (US-Canada)

Modified RER with good-specific λ_i

$$\ln \widetilde{q}_{ijt} = \alpha_{ij} + \beta \ln \widetilde{q}_{it} + \gamma' X_{ijt} + u_{ijt}$$

	(1)	(2)	(3)	(4)
$ln \tilde{q}_{it}$	0.894***	0.862***	0.883***	0.880***
	(0.029)	(0.028)	(0.032)	(0.033)
# of Obs.	389,500	389,500	389,500	389,500
city-pairs FE	Ν	Y	N	Y
Control for productivity	Ν	Ν	Y	Y
ŵ	0.106	0.138	0.117	0.120

Note: *10% significance level, **5% significance level, ***1% significance level. For λ , the good-specific values of the degrees of price stickiness (λ_i) are used. All specifications include the fixed effect at the good level. The standard errors are clustered by goods.

Test for behavioral inattention (UK–Euro)

Modified RER with good-specific λ_i

$$\ln \widetilde{q}_{ijt} = \alpha_{ij} + \beta \ln \widetilde{q}_{it} + \gamma' X_{ijt} + u_{ijt}$$

	(1)	(2)	(3)	(4)
$ln \tilde{q}_{it}$	0.866***	0.834***	0.864***	0.840***
	(0.047)	(0.049)	(0.048)	(0.049)
# of Obs.	171,606	171,606	170,750	170,750
city-pairs FE	Ν	Y	N	Y
Control for productivity	Ν	Ν	Y	Y
ŵ	0.134	0.166	0.136	0.160

Note: *10% significance level, **5% significance level, ***1% significance level. For λ , the good-specific values of the degrees of price stickiness (λ_i) are used. All specifications include the fixed effect at the good level. The standard errors are clustered by goods.

Test for behavioral inattention: Summary

- The null hypothesis of m = 1 is significantly rejected and robust to various specifications
- The estimated degree of inattention ranges between 0.11–0.25
 - Baseline estimate m = 0.106 for US-Canada
 - Baseline estimate m = 0.134 for UK-Euro

Propositions 2 & 3

Under the same assumptions in Proposition 1,

$$HL_q > HL_{q|m=1}$$
 (PPP puzzle 1)

$HL_q > HL_{qi}$ (PPP puzzle 2)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

provided $m \in (0,1)$, $\lambda \in (0,1)$, $\tau \in (0,\infty)$, and $\sigma_r / \sigma_n \in (0,\infty)$

For US-Canada with m = 0.106

	Model $(m = 1)$	Model $(m < 1)$	95% CI	Data
Aggregate	e real exchange rate	s (PPP deviations)		
Half-life	0.6	3.7	[2.5, 7.6]	4.9
Good-leve	el real exchange rate	es (LOP deviations)		
Half-life	0.6	1.2	[1.0, 2.1]	1.6

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For UK-Euro with m = 0.134

	Model $(m = 1)$	Model $(m < 1)$	95% CI	Data
Aggregate	e real exchange rate	s (PPP deviations)		
Half-life	0.6	2.5	[1.7, 4.9]	2.4
Good-leve	el real exchange rate	es (LOP deviations)		
Half-life	0.6	1.0	[0.8, 1.5]	1.2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Conclusion

- Two puzzles on PPP and LOP deviations
 - 1. The persistence of the aggregate RER is too high to be explained by reasonable degree of nominal price rigidities
 - 2. The good-level RER is less persistent than the aggregate RER
- The behavioral model by Gabaix (2014, 2020) could explain these puzzles

	Model $(m = 1)$	Model $(m < 1)$	Data
Aggregate	e real exchange rate	es (PPP deviations)	
Half-life	0.6	2.5-3.7	2.4-4.9
Good-leve	el real exchange rat	es (LOP deviations)	
Half-life	0.6	1.0-1.2	1.2-1.6

The way forward

- 1. Roundabout production
 - It may also generate the feedback effect from the aggregate RER to the good-level RER
 - The model with roundabout production function generates complementarity

$$y_{it}(z) = a_{it}n_{it}(z)^{1-\alpha}\Gamma_{it}(z)^{\alpha}$$

where $\Gamma_{it}(z)$ is the intermediate input demand

- The marginal cost of production is affected by the general price index
- Pricing complementarity generates the link btwn ln q_{it} and ln q_t

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Behavioral attention VS. Roundabout production

- Comparing half-lives
- ► Behavioral inattention based on the estimated *m* VS. Extreme case of roundabout production ($\alpha = 0.99$)

Much powerful in generating persistence

Thank you!

(ロ)、(型)、(E)、(E)、 E) の(()

Households

Domestic household solves

$$\max \mathbb{E}_0 \sum_{t=0}^{\infty} \delta^t (\ln c_t - \chi n_t)$$

s.t.
$$M_t + B_t = W_t n_t + R_{t-1} B_{t-1} + (M_{t-1} - P_t c_{t-1}) + T_t + \Pi_t$$

 $M_t \ge P_t c_t$

 M_t : nominal money holding, B_t : nominal bond holding, W_t : nominal wage, R_t : nominal interest, P_t : price level, T_t : transfers, Π_t : profits, δ : discount factor

 Foreign household's problem is analogously defined except for the budget const.

s.t.
$$M_t^* + \frac{B_t^*}{S_t} = W_t^* n_t^* + \frac{R_{t-1}}{S_t} B_{t-1}^* + (M_{t-1}^* - P_{t-1}^* c_{t-1}^*) + T_t^* + \Pi_t^*$$

 $M_t^* \ge P_t^* c_t^*$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 S_t : nominal exchange rate

Households (2)

► FOC

$$\frac{W_t}{P_t} = \chi c_t, \ \frac{W_t^*}{P_t^*} = \chi c_t^*$$

$$M_t = P_t c_t, \ M_t^* = P_t^* c_t^*$$

$$\frac{1}{R_t} = \delta \mathbb{E}_t \left[\left(\frac{c_{t+1}}{c_t} \right)^{-1} \frac{P_t}{P_{t+1}} \right] = \beta \mathbb{E}_t \left[\left(\frac{c_{t+1}^*}{c_t^*} \right)^{-1} \frac{S_t}{S_{t+1}} \frac{P_t^*}{P_{t+1}^*} \right]$$
$$q_t \frac{U_{c,t}}{U_{c,t}^*} = q_{t-1} \frac{U_{c,t-1}}{U_{c,t-1}^*} = \dots = q_0 \frac{U_{c,0}}{U_{c,0}^*} = 1$$

→ back

CES aggregators

Home and Foreign (*)

Consumption of good i

$$c_{it} = \left[\int c_{it}(z)^{(\varepsilon-1)/\varepsilon} dz\right]^{\frac{\varepsilon}{\varepsilon-1}}, \ c_{it}^* = \left[\int c_{it}^*(z)^{(\varepsilon-1)/\varepsilon} dz\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

• where z denotes the brand z of good i

- ▶ $z \in [0, 1/2]$ is produced in home and $z \in (1/2, 1]$ is produced in foreign
- Aggregate consumption

$$c_t = \left[\int c_{it}^{(\varepsilon-1)/\varepsilon} di\right]^{\frac{\varepsilon}{\varepsilon-1}}, \ c_t^* = \left[\int c_{it}^{*(\varepsilon-1)/\varepsilon} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

Resource constraint

Production function

$$y_{it}(z) = a_{it}n_{it}(z)$$

▶ $z \in [0, 1/2]$ are domestic firms

$$y_{it}^*(z) = a_{it}^* n_{it}^*(z)$$

▶ $z \in (1/2, 1]$ are foreign firms

Resource constraint

$$\begin{array}{rcl} c_{it}(z) + (1+\tau)c_{it}^*(z) &=& y_{it}(z) \text{ for } z \in [0,1/2] \\ (1+\tau)c_{it}(z) + c_{it}^*(z) &=& y_{it}^*(z) \text{ for } z \in (1/2,1] \end{array}$$

Firms supply their goods to home and foreign cities back

э

Price indexes for good i

Under Calvo pricing,

$$\hat{p}_{it} = \lambda (\hat{p}_{it-1} - \pi_t) + (1 - \lambda) \hat{p}_{it}^{opt} (m_H, m_F) \hat{p}_{it}^* = \lambda (\hat{p}_{it-1}^* - \pi_t^*) + (1 - \lambda) \hat{p}_{it}^{opt*} (m_F^*, m_H^*)$$

▶ p̂^{opt}_{it} (m_H, m_F), p̂^{opt*}_{it} (m^{*}_F, m^{*}_H) are the weighted average of reset prices:

$$\hat{p}_{it}^{opt}(m_H, m_F) = \omega \hat{p}_{Hi}(m_H) + (1 - \omega) \hat{p}_{Fi}(m_F) \hat{p}_{it}^{opt*}(m_F^*, m_H^*) = \omega \hat{p}_{Fi}(m_F^*) + (1 - \omega) \hat{p}_{Hi}(m_H^*)$$

where $1/2 < \omega < 1$ is the degree of home bias as a function of trade costs τ , back

Proposition 2

Under the same assumptions in Proposition 1,

$$\rho_q \ge \lambda$$

provided $m \in (0,1]$ and $\lambda \in (0,1)$.

Aggregate the LOP deviations

$$\ln q_{it} = \lambda \ln q_{it-1} + (1-m)(1-\lambda) \ln q_t + \lambda \varepsilon_t^n + \psi \varepsilon_{it}^r$$

to get

$$\ln q_t = \rho_q \ln q_{t-1} + \rho_q \varepsilon_t^n,$$

where

$$\rho_q = \frac{\lambda}{1 - (1 - m)(1 - \lambda)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition 3

Under the same assumptions in Proposition 1,

$$\rho_q \ge \rho_{qi}$$

provided $m \in (0,1]$, $\lambda \in (0,1)$, $\tau \in [0,\infty)$, $\varepsilon \in (1,\infty)$, and $\sigma_r/\sigma_n \in [0,\infty)$.

• The relationship btwn ρ_q and ρ_{qi} is

$$\rho_q = \left[\frac{1}{1 - (1 - m)(1 - \lambda)\frac{A}{1 + A}}\right]\rho_{qi}$$

where

$$A = \psi^2 \frac{1 - \rho_q^2}{\rho_q^2 (1 - \lambda^2)} \left(\frac{\sigma_r}{\sigma_n}\right)^2$$

