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Abstract
Coupled forward-backward stochastic differential equations (FBSDEs) are closely related to fi-

nancially important issues such as optimal investment. However, it is well known that obtaining
solutions is challenging, even when employing numerical methods. In this paper, we propose new
methods that combine an algorithm recently developed for coupled FBSDEs and an asymptotic
expansion approach to those FBSDEs as control variates for learning of the neural networks. The
proposed method is demonstrated to perform better than the original algorithm in numerical exam-
ples, including one with a financial implication. The results show that the proposed method exhibits
not only faster convergence but also greater stability in computation.

1 Introduction

Over the past few decades, there has been a notable increase in interest in backward stochastic differential
equations (BSDEs) among both practitioners and academic researchers. It is well known that solving
BSDEs is closely related to stochastic control problem such as portfolio optimization in finance. In
contrast to traditional forward stochastic differential equations (FSDEs), these are stochastic equations
with boundary conditions at a future time point T > 0. Let (Ω,F , {Ft}t≥0,P) be a filtered probability
space satisfying usual conditions. BSDEs are then typically formulated as

dYt = −f(t, Yt, Zt, ω)dt+ Ztdwt; YT = V (1)

where V is a FT -mesurable Rm-valued random variable, f : [0,∞)×Rm ×Rm×d ×Ω → Rm and w is a
d-dimensional Wiener process, or in its integral form,

Yt = V +

∫ T

t

f(s, Ys, Zs, ω)ds−
∫ T

t

Zsdws. (2)

A pair of (Y, Z), Rm-valued and Rm×d-valued stochastic processes respectively, is called a solution to
the BSDE (1) or (2).

A forward-backward stochastic differential equation (FBSDE) is an equation in which V and/or f ,
which are often called the ”driver” of Y , depend on X, a solution of another FSDEs, as in

Xt = X0 +

∫ t

0

b(s,Xs, ω)ds+

∫ t

0

σ(s,Xs, ω)dws, (3)

Yt = g(XT , ω) +

∫ T

t

f(s,Xs, Ys, Zs, ω)ds−
∫ T

t

Zsdws (4)

∗fin.tk.house@gmail.com
†Forthcoming in PLOS one
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where X0 ∈ Rn, b : [0,∞) × Rn × Ω → Rn, σ : [0,∞) × Rn × Ω → Rn×d; g : Rn×Ω → Rm satisfies
V = g(XT , ω).

Moreover, if the functions b and/or σ depend on the solution (Y, Z) to the BSDE (2), as in

Xt = X0 +

∫ t

0

b(s,Xs, Ys, Zs, ω)ds+

∫ t

0

σ(s,Xs, Ys, Zs, ω)dws, (5)

Yt = g(XT , ω) +

∫ T

t

f(s,Xs, Ys, Zs, ω)ds−
∫ T

t

Zsdws, (6)

the system consisting of these two equations is called a coupled FBSDE. Although the functions b, f, g
and σ may contain dependence on the sample path ω beyond their dependence through X,Y and Z,
we suppress ω henceforth for notational simplicity. One of sufficient conditions for the existence of the
solution to this FBSDE is provided in Ji et al. [1].

The (coupled) FBSDEs often arise in financial problems such as pricing derivatives, estimating the
size of credit valuation adjustments (CVAs) and funding valuation adjustments (FVAs), and deriving
optimal investments. Consequently, the solution of FBSDEs is of great importance. However, with few
exceptions, FBSDEs are not analytically tractable, particularly in coupled cases. Therefore, efficient
numerical computation of these equations is a highly desirable objective.

In recent times, a multitude of machine learning methodologies have been employed to investigate
this subject area. In particular, following the seminal works of E et al.[2] and Han et al.[3], numerous
subsequent studies have used deep neural networks to construct numerical solutions with Monte Carlo
simulations, which are referred to as ”deep solvers” for BSDEs. Among these, [1] develops three algo-
rithms using deep solvers to construct numerical solutions to fully-coupled FBSDEs and demonstrates
the effectiveness of their techniques in several numerical experiments.

Additionally, numerous efforts have been made to enhance the efficacy of deep solvers, which includes
the implementation of a methodology known as “asymptotic expansions” in FBSDEs. Asymptotic
expansion approaches in finance first emerged in pricing average options (Yoshida[4], Kunitomo and
Takahashi[5]) and have since been applied to a broad class of financial issues, including; derivative
evaluation under stochastic interest rates (Kunitomo and Takahashi[6], Takahashi and Matsushima[7],
Antonov and Misirpashaev[8], Takahashi et al.[9], Shiraya et al.[10]); pricing barrier options (Shiraya et
al.[11], Shiraya et al.[12], Kato et al.[13]); optimal portfolio problems (Takahashi and Yoshida[14], Naito
and Takehara[15, 16]); construction of control variates for Monte Carlo simulations (Takahashi and
Yoshida[17], Takahashi and Takehara[18]) and so on. For the mathematical validity of this approach,
see Yoshida[4, 19] and Kunitomo and Takahashi[20].

This methodology has also been applied to the field of FBSDEs: For instance, see Fujii et al.[21],
Fujii and Takahashi[22, 23, 24, 25] and Takahashi and Yamada[26, 27]. For the combination of this
methodology and the deep solvers applied to to uncoupled FBSDEs, Fujii et al.[28] employs the asymp-
totic expansions around linear drivers as control variates in conjunction with the deep solvers. Takahashi
et al.[29] also employs asymptotic expansions as control variates, providing rigorous error bounds. In
[15, 16], the optimal investment in complete and incomplete markets is considered, respectively. Rather
than deriving the expansion of the corresponding FBSDE directly, a known result of the asymptotic
expansion of the optimal portfolio presented by [14] is employed as a control variate. For other works
applying the asymptotic expansion methods with deep solvers to FSDEs and/or BSDEs, see Naito and
Yamada[30], Iguchi et al.[31] and Takahashi and Yamada[32] and so on. Nevertheless, to the best of our
knowledge, the application of the asymptotic expansion approach to deep solvers for coupled FBSDEs is
none. Accordingly, this paper proposes an improvement in the efficiency of the algorithm proposed by
[1] through the use of the asymptotic expansion of coupled FBSDEs as control variates. The proposed
technique is demonstrated to outperform the original algorithm in several numerical examples, including
one pertaining to optimal investment strategies in incomplete markets.

The organization of this paper is as follows. Section 2 describes relationship between stochastic
control problems with prior knowledge and FBSDEs. Section 3 then derives the asymptotic expansion
of the target coupled FBSDE and Section 4 proposes a new algorithm which applies the expansion as
control variates to the original algorithm by [1]. Section 5 presents a series of numerical examples that
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illustrate the efficacy of the proposed technique. Finally, concluding remarks are stated in Section 6.
Some elements omitted in this paper due to space limitation are found in our full version [33].

2 Stochastic control with prior knowledge and FBSDE

In this section, we introduce a stochastic control problem with prior knowledge related to solving the
coupled FBSDE (5)-(6), following arguments similar to those in [1]. First, let L2 denote the space of
all Ft-adapted square-integrable processes, and let û = {ût}t∈[0,T ], ẑ = {ẑt}t∈[0,T ] be elements of this
space. We consider the following control problem:

inf
u,z∈L2

E

[
|Y u,û,z,ẑ

T − g(Xu,û,z,ẑ
T )|2 +

∫ T

0

|Y u,û,z,ẑ
t − (ut + ût)|2dt

]
(7)

where Xu,û,z,ẑ and Y u,û,z,ẑ satisfy the following FSDEs

Xu,û,z,ẑ
t = X0 +

∫ t

0

b(s,Xu,û,z,ẑ
s , ûs + us, ẑs + zs)ds

+

∫ t

0

σ(s,Xu,û,z,ẑ
s , ûs + us, ẑs + zs)dws, (8)

Y u,û,z,ẑ
t = (û0 + u0)−

∫ t

0

f(s,Xu,û,z,ẑ
s , Y u,û,z,ẑ

s , ẑs + zs)ds+

∫ t

0

(ẑs + zs)dws. (9)

Here we know the concrete processes û and ẑ in advance, which can be interpreted as prior knowledge
for u and z, respectively.

Proposition 1. Assume that the FBSDE (5)-(6) has a solution (X,Y, Z). Then, u∗ = {u∗
t := Yt −

ût}t∈[0,T ] and z∗ = {z∗t := Zt − ẑt}t∈[0,T ] solve the control problem (7).

Proof. Substituting û+ u∗ = Y and ẑ + z∗ = Z, the processes Xu∗,û,z∗,ẑ and Y u∗,û,z∗,ẑ satisfy

Xu∗,û,z∗,ẑ
t = X0 +

∫ t

0

b(s,Xu∗,û,z∗,ẑ
s , Ys, Zs)ds+

∫ t

0

σ(s,Xu∗,û,z∗,ẑ
s , Ys, Zs)dws,

Y u∗,û,z∗,ẑ
t = Y0 −

∫ t

0

f(s,Xu∗,û,z∗,ẑ
s , Y u∗,û,z∗,ẑ

s , Zs)ds+

∫ t

0

Zsdws.

Clearly, Xu∗,û,z∗,ẑ = X and Y u∗,û,z∗,ẑ = Y satisfy these equation with Y u,û,z,ẑ
T = YT = g(XT ) =

g(Xu,û,z,ẑ
T ). This implies the optimality of u∗ and z∗ since the infimum in (7) is achieved at zero.

Next, we define the sub-problem with neural networks as

inf
u,z∈NN

E

[
|Y u,û,z,ẑ

T − g(Xu,û,z,ẑ
T )|2 +

∫ T

0

|Y u,û,z,ẑ
t − (ut + ût)|2dt

]
(10)

where NN is the space of all controls represented by some neural network. Then, by the Universal
Approximation Theorem of deep neural networks (e.g. Calin [34, Theorem 9.5.3]), we can always find
network architectures capable of approximating (u∗, z∗) in Proposition 1 with ϵ-precision.

We also analyze the approximation error when the neural networks are insufficiently trained. For
example, assuming Lipschitz continuity of the functions f, b and σ, the L2-error between the optimally

controlled process YT = Y u∗,û,z∗,ẑ
T and Y u,û,z,ẑ

T with a suboptimal control (u, z) can be evaluated via
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Gronwall’s inequality as

E
[
|Y u∗,û,z∗,ẑ

T − Y u,û,z,ẑ
T |2

]
= E

[∣∣∣∣
(
(u∗

0 + û0)−
∫ T

0

f(s,Xu∗,û,z∗,ẑ
s , Y u∗,û,z∗,ẑ

s , z∗s + ẑs)ds+

∫ T

0

(z∗s + ẑs)dws

)

−

(
(u0 + û0)−

∫ T

0

f(s,Xu,û,z,ẑ
s , Y u,û,z,ẑ

s , zs + ẑs)ds+

∫ T

0

(zs + ẑs)dws

)∣∣∣∣2
]

≤ C

(
E[|u∗

0 − u0|2] +
∫ T

0

(
E[|u∗

s − us|2] +E[|z∗s − zs|2]
)
ds

)
(11)

where C > 0 is some constant dependent on the Lipschitz coefficients and T .
We reformulate the notation to explicitly emphasize the dependence on prior knowledge, denoting the

optimal controls as u∗(û) and z∗(ẑ). Correspondingly, the suboptimal controls are expressed as u(û, ẑ)
and z(û, ẑ), reflecting their joint dependence on both prior components through the control problem
(10).

Then, from (11) we observe the followings: First, when the prior knowledge û and ẑ closely approxi-
mate the true solution Y and Z, the optimal control u∗(û) = Y − û and z∗(ẑ) = Z− ẑ are small. Second,
consider two distinct prior pairs (û1, ẑ1) and (û2, ẑ2) where the former provides superior approximation
to (Y, Z) compared to the latter. To illustrate our primary motivation for using approximations based
on an asymptotic expansion as prior knowledge, for instance, let û1 and ẑ1 be the estimates obtained
via the asymptotic expansion for Y and Z. In contrast, we set û2 and ẑ2 to zero, which corresponds
to the original algorithm in [1]. In such cases, under identical training procedures the errors for subop-
timal controls |u∗

s(û1)− us(û1, ẑ1)| and |z∗s (ẑ1)− zs(û1, ẑ1)| tend to be substantially smaller than their
counterparts |u∗

s(û2)− us(û2, ẑ2)| = |Y − us(0, 0)| and |z∗s (ẑ2)− zs(û2, ẑ2)| = |Z − zs(0, 0)|, particularly
during initial training phases due to the typical random parameter initialization, which accelerates the
convergence of the algorithm as observed in Numerical Example Section. Moreover, providing prior
knowledge for either Y or Z alone may prove insufficient, as evidenced in Example 2 of that section,
due to the simultaneous dependence of the controls u and z on û and ẑ.

3 The asymptotic expansion for coupled FBSDEs

Motivated by [22], in this section we apply the asymptotic expansion approach, which is a general
approximation scheme to solutions to SDEs, to the coupled FBSDE (5) and (6). First, to apply this
approach we consider the following FBSDE instead of the original equations.

Xϵ
t = X0 +

∫ t

0

b(s,Xϵ
s , ϵY

ϵ
s , ϵZ

ϵ
s)ds+ ϵ

∫ t

0

σ(s,Xϵ
s , Y

ϵ
s , Z

ϵ
s)dws, (12)

Y ϵ
t = g(Xϵ

T ) +

∫ T

t

f(s,Xϵ
s , ϵY

ϵ
s , ϵZ

ϵ
s)ds−

∫ T

t

Zϵ
sdws (13)

with an parameter ϵ ∈ (0, 1]. If ϵ = 1 the equations above coincide with the original ones.
Then, we approximate the solution (Xϵ, Y ϵ, Zϵ) to these FBSDE with their formal Taylor expansions

with respect to ϵ as
Xϵ

t ∼ XAE,l
t , Y ϵ

t ∼ Y AE,l
t , Zϵ

t ∼ ZAE,l
t , (14)

for l ≤ 1 where

XAE,l
t :=

l∑
n=0

Xn
t

ϵn

n!
, Y AE,l

t :=

l∑
n=0

Y n
t

ϵn

n!
, ZAE,l

t :=

l∑
n=0

Zn
t

ϵn

n!
,
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and for n ≥ 1

X0
t := lim

ϵ↓0
Xϵ

t , Xn
t :=

∂nXϵ
t

∂ϵn

∣∣∣∣
ϵ=0

, Y 0
t := lim

ϵ↓0
Y ϵ
t , Y n

t :=
∂nY ϵ

t

∂ϵn

∣∣∣∣
ϵ=0

,

Z0
t := lim

ϵ↓0
Zϵ
t , Zn

t :=
∂nZϵ

t

∂ϵn

∣∣∣∣
ϵ=0

.

In particular, we have the following concrete expression for the leading two terms, that is, the ϵ0-
and ϵ1- order ones.

Proposition 2. First, the ϵ0-order terms are give by

X0
t = X0 +

∫ t

0

b0(s)ds, Y 0
t = g(X0

T ) +

∫ T

t

f0(s)ds (15)

where b0(t) := b(t,X0
t , 0, 0) and f0(t) := f(t,X0

t , 0, 0), and Z0
t ≡ 0.

Next, the ϵ1-order terms are given by

X1
t = X̃−1

t

(∫ t

0

X̃sb̃(s)ds+

∫ t

0

X̃sσ
0(s)dws

)
, (16)

Y 1
t = Ξ(t, T ) + ∆(t, T )X1

t , (17)

Z1
t = (Z1

ik,t)ik, Z1
ik,t = ∆i(t, T )σ

0
k(t), 1 ≤ i ≤ m, 1 ≤ k ≤ d (18)

where X̃t := exp
(
−
∫ t

0
∇xb(t,X

0
t , 0, 0)ds

)
, b̃(t) := ∇yb(t,X

0
t , 0, 0)Y

0
t and σ0(t) := σ(t,X0

t , Y
0
t , 0).

Ξ(t, T ),∆(t, T ) are certain deterministic functions whose definition is given in Section A of [33], and
∆i(t, T ) is i-th row of ∆(t, T ) and σ0

k is k-th column of σ0. ∇x and ∇y are differential operators with
respect to each element of x and y, whose concrete definitions are also given in [33].

Proof. See [33].

Obviously, the leading terms (X0
t , Y

0
t ) are both deterministic processes as b0(t) and f0(t) are de-

terministic vector-valued functions, and the first-order terms (X1
t , Y

1
t ) follow Gaussian distributions as

X̃t, b̄(t), σ
0(t),Ξ(t, T ) and ∆(t, T ) are all deterministic matrix-valued functions. In contrast, for the ap-

proximation of Zt, Z
0
t is actually zero and Z1

t is deterministic. We emphasize that, despite this simple
structure, these asymptotic expansions serve as effective prior knowledge for the algorithm of [1], as
confirmed in Numerical Example Section.

Remark 1. In principle, the terms in higher-order expansion can be computed straightforwardly as the
ϵ1-order terms. For example, ϵ2-order terms (X2

t , Y
2
t , Z

2
t ) satisfy the following equations:

X2
t =

∫ t

0

(
∂xb

0(s)X2
s + ∂2

xb
0(s)(X1

s )
2 + ∂2

yb
0(s)(Y 0

s )
2 + 2∂yb

0(s)Y 1
s + 2∂zb

0(s)Z1
s

+2∂x∂yb
0(s)X1

sY
0
s

)
ds+ 2

∫ t

0

(∂xσ
0(s)X1

s + ∂yσ
0(s)Y 0

s )dws, (19)

Y 2
t =

∫ T

t

(
∂xf

0(s)X2
s + ∂2

xf
0(s)(X1

s )
2 + ∂2

yf
0(s)(Y 0

s )
2 + 2∂yf

0(s)Y 1
s + 2∂zf

0(s)Z1
s

+2∂x∂yf
0(s)X1

sY
0
s

)
ds+ g′′(X0

T )(X
1
T )

2 + g′(X0
T )X

2
T +

∫ T

t

Z2
sdws, (20)

where ∂ξ = ∂
∂ξ for ξ ∈ {x, y, z}, ∂n

ξ b
0(s) := ∂n

ξ b(s,X
0
s , 0, 0), ∂

n
ξ f

0(s) := ∂n
ξ f(s,X

0
s , 0, 0) and ∂ξσ

0(s) :=

∂ξσ(s,X
0
s , Y

0
s , 0). Here we assume that n = m = d = 1 to avoid complicated notation. Thanks to

the decoupled structure of (X2
t , Y

2
t ), namely X2 depends only on X1, Y 1, Z1, Z0, Y 0 but not on Y 2,

this system can be solved easily. However, when the dimension of the system n,m and d increases, as
in Example 1 in Numerical Examples Section, the computational burden grows substantially, making
implementation challenging even at the second order. This is why we focus on the low-order expansions
for control variates.
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Remark 2. Instead of using the equations (12)-(13), it seems natural to start from redefining the
original FBSDE (5)-(6) as

Xϵ
t = X0 +

∫ t

0

b(s,Xϵ
s , Y

ϵ
s , Z

ϵ
s)ds+ ϵ

∫ t

0

σ(s,Xϵ
s , Y

ϵ
s , Z

ϵ
s)dws, (21)

Y ϵ
t = g(Xϵ

T ) +

∫ T

t

f(s,Xϵ
s , Y

ϵ
s , Z

ϵ
s)ds−

∫ T

t

Zϵ
sdws. (22)

With this reformulation, the leading term X0
t , Y

0
t and Z0

t satisfy the following FBSDE:

X0
t = X0 +

∫ t

0

b(s,X0
s , Y

0
s , Z

0
s )ds, (23)

Y 0
t = g(X0

T ) +

∫ T

t

f(s,X0
s , Y

0
s , Z

0
s )ds−

∫ T

t

Z0
sdws. (24)

Obviously Z0
t ≡ 0 satisfies these equations, and X0

t and Y 0
t are given as the solution to the coupled

equations as

X0
t = X0 +

∫ t

0

b(s,X0
s , Y

0
s , 0)ds, (25)

Y 0
t = g(X0

T ) +

∫ T

t

f(s,X0
s , Y

0
s , 0)ds, (26)

which usually presents greater computational complexity compared to the decoupled equations (15). Fur-
thermore, the ϵ1-order terms satisfy

X1
t =

∫ t

0

(∇xb(s,X
0
s , Y

0
s , 0)X

1
s +∇yb(s,X

0
s , Y

0
s , 0)Y

1
s +∇zb(s,X

0
s , Y

0
s , 0)Z⃗

1
s )ds

+

∫ t

0

σ0(s)dws, (27)

Y 1
t =

∫ T

t

(∇xf(s,X
0
s , Y

0
s , 0)X

1
s +∇yf(s,X

0
s , Y

0
s , 0)Y

1
s +∇zf(s,X

0
s , Y

0
s , 0)Z⃗

1
s )ds

+∇xg(X
0
T )X

1
T −

∫ T

t

Z1
sdws (28)

where Z⃗1
t = (Z1

11,t, . . . , Z
1
1d,t, Z

1
21,t, . . . , Z

1
2d,t, . . . , Z

1
d1,t, . . . , Z

1
dd,t)

⊤. This coupled system often requires

much more computational efforts, while it admits the solution (X1, Y 1, Z1) so that X1
t and Y 1

t are
jointly Gaussian distributed and Z1

t is deterministic as well as that in Proposition 2. Although there are
several ways to introduce perturbations as in (21)-(22), which may provide more precise approximations
in the same orders of expansions, our focus is on computational feasibility in many concrete examples
as possible including high dimensional problems.

4 The asymptotic expansion as control variates

In this section the asymptotic expansion derived in the previous section is combined with the algorithm
of [1]. Although we develop the algorithms with combination of all the three algorithms of [1] and our
asymptotic expansion, here the one for Algorithm 2 of [1] with the asymptotic expansion is displayed
and the others are left in [33]. We note that the use of our asymptotic expansion as controls with
Algorithm 1 and 3 in [1] is also quite effective, as shown in [33].

In particular, the asymptotic expansions Y AE,l
t and ZAE,l

t are used as control variates for the neural

networks with replacement of ϕ1 by χ× Y AE,l
t + ϕ1 and ϕ2 by χ×ZAE,l

t + ϕ2. With setting χ = 1 you
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obtain the proposed algorithm, while with setting χ = 0 its original version is recovered, though it is also
found in [1] and [33]. As discussed in the first section, this algorithm can approximate the solution with
any precision when the neural networks are deep enough. Furthermore, if the approximate processes
(Y AE,l, ZAE,l) are sufficiently close to the true process (Y, Z), we can expect remainders should be small
and thus be easier to learn. The detailed algorithm is given as below.

Algorithm 1 Algo.2 in [1] (feedback control based on X) + the asymptotic expansion

Input: The Wiener process ∆wti , initial parameters θ0, learning rate η, binary parameter χ ∈ {0, 1};
the functions b, f, σ, g are given in (5)-(6);

Output: Xπ
T and the process (Y π

ti )0≤i≤N .
1: for k = 1 to maxstep do
2: for m = 1 to M do
3: Lm = 0;
4: Xk,π,m

0 = X0;

5: Y k,π,m
0 = χ× Y AE,l

0 + ϕ1(X0; θ
1,k−1
0 );

6: for i = 0 to N − 1 do
7: uk,π,m

ti = χ× Y AE,l
ti + ϕ1(Xk,π,m

ti ; θ1,k−1
i );

8: Zk,π,m
ti = χ× ZAE,l

ti + ϕ2(Xk,π,m
ti ; θ2,k−1

i );

9: Xk,π,m
ti+1

= Xk,π,m
ti +b(ti, X

k,π,m
ti , uk,π,m

ti , Zk,π,m
ti )∆ti +σ(ti, X

k,π,m
ti , uk,π,m

ti , Zk,π,m
ti )∆wti ;

10: Y k,π,m
ti+1

= Y k,π,m
ti − f(ti, X

k,π,m
ti , Y k,π,m

ti , Zk,π,m
ti )∆ti + Zk,π,m

ti ∆wti ;

11: Lm = Lm + T
N

∣∣Y k,π,m
ti+1

− uk,π,m
ti+1

∣∣2
12: end for
13: Lm = Lm +

∣∣Y k,π,m
T − g(Xk,π,m

T )
∣∣2

14: end for
15: Lossk = 1

2M

∑M
m=1 L

m;
16: θk = θk−1 − η∇Lossk
17: end for

In the algorithm, Y k,π,m
t and uk,π,m

t are realization of Y k,π
t and uk,π

t on the m-th path respectively.
Further, ∇Lossk is computed by

∇Lossk = 1
M

∑M
m=1

[
(Y k,π,m

T − g(Xk,π,m
T ))(∇Y k,π,m

T − g′(Xk,π,m
T )∇Xk,π,m

T ))

+ T
N

∑N−1
i=0 (Y k,π,m

ti+1
− uk,π,m

ti+1
)(∇Y k,π,m

ti+1
−∇uk,π,m

ti+1
))
]
. (29)

This algorithm can be combined with methods such as El Mouatasim et al. [35] for even greater
efficiency.

Following the recommendation by [1], we use one n-dim input layer, two hidden (n+ 10)-dim layers
for both networks ϕ1 and ϕ2, and a m-dim output layer for ϕ1 and a (m× d)-dim output layer for ϕ2.

In this algorithm, the entire processes Y AE,l = {Y AE,l
t }0≤t≤T and ZAE,l = {ZAE,l

t }0≤t≤T are both
used as the control variates for Y and Z respectively, where the two neural networks are applied to
estimate the difference between those two approximation and corresponding true processes. Note that
Y AE,l is stochastic even when l = 1, while in the other algorithms proposed in [33] employ only ZAE,1 as
deterministic controls. Y n

ti can be directly obtained with an explicit expression with respect to (Xn
t )n≤l

and (Y n
t , Zn

t )n≤l−1 such as (17), while there is an alternative way given in [33]. The difference between
the computation above and its alternative seems to be very small as shown there.

5 Numerical examples

In this section, we confirm the effectiveness of the proposed method by several numerical examples for
coupled FBSDEs. Due to space limitations, some of them are omitted and left in [33]. Unless otherwise
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stated, the parameters for the neural network are set to be as follows: A batch size is 256; a learning
rate is 0.005; a number of discretization for the partition π is 25. Batch normalization is applied to each
layer, and the Adam optimizer is employed. The networks are implemented using Python pytorch, and
the code is publicly available on Github[36].

5.1 Coupled FBSDEs which do not contain Z in the forward equation for X

First, in this subsection we apply the proposed method to the FBSDE where the coefficients for X
depend only on Y but not on Z. Concretely, the following FBSDE is considered.

Example 1.

Xt = X0 +

∫ t

0

b(s,Xs, Ys)ds+

∫ t

0

σ(s,Xs, Ys)dws,

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

Z⊤
s dws

where X0 = 0 ∈ Rd and

bi(t, x, y) =
t
2 cos

2(y + xi), σi,j(t, x, y) =

{
t
2 sin

2(y + xi); i = j,
0; i ̸= j,

f(t, x, y, z) =
∑d

i=1 zi −
1
d (1 +

t
2 )
∑d

i=1 x
2
i − t

d

∑d
i=1 xi(xi+1 + t)

− t2

d2

∑d
i=1(xi+1 + t) sin4(y + xi),

g(x) = 1
d

∑d
i=1 x

2
i (xi+1 + T ), xd+1 := x1.

This can be found in [1] and the exact solution is explicitly given by Yt =
1
d

∑d
i=1 X

2
t,i(Xt,i+1 + t).

Fig 1 and Fig 2 depict the comparison among the original method, the proposed method and the
method using the asymptotic expansion alone, indicated as “original”, “with AE” and “only AE”,
respectively, for T = 0.1 and d = 100. The results for the other algorithms are found in [33] as well
as they are in the other examples below. We generate ten independent sets of paths with different
random seeds, and average the results as conducted in [1]. The comparison is presented in terms of
the computational time. In order to facilitate comparison, the computational time is standardized such
that the time required for the original method to compute 10,000 iterations is set to one. These path
generation and standardization in computational time are maintained for all subsequent figures. Note
that for the method “only AE” the estimates for Y0 and Z are computed immediately using the explicit
formulas, while the loss function is determined as the average of the values obtained over the batches
employed during neural network training.

In both of the loss function and the error for Y0, the proposed method with the asymptotic expansions
as control variates, demonstrates a notable enhancement in performance relative to the original method
even with taking computational time into consideration. Notably, the use of the asymptotic expansions
not only enhances the accuracy of the estimates during the initial learning steps but also throughout the
entire learning process, that is, the levels to which the loss function or the error converge. Additionally,
it is observed that the proposed method exhibits slight fluctuations in its results, yet these are less
significant as the order of magnitude of the error is smaller than that of the original method. In
comparison to the method using the asymptotic expansion alone, the proposed method, which employs
the expansion as control variates, significantly outperforms in both the size of the error for Y0 and the
value of the loss function.
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Figure 1: Results for Example 1 by the original method (indicated as “original”), the
asymptotic expansion (indicated as “only AE”) and the proposed method (indicated as
“with AE”). The value of the loss function is plotted against computational time on the horizontal
axis: d = 100

Figure 2: Results for Example 1 by the original method (indicated as “original”), the
asymptotic expansion (indicated as “only AE”) and the proposed method (indicated as
“with AE”). The error for the value of Y0 is plotted against computational time on the horizontal
axis: d = 100

5.2 Coupled FBSDEs which contains Z in the equation for X

In this subsection, we confirm how the proposed method works in the case where the coefficients for X
depend both on Y and Z. It is well known that obtaining a good numerical solution for such FBSDEs
is significantly more challenging than for ones in which X depends only on Y .

First, we see the following one-dimensional example found in [1] as with the previous one.

Example 2.

Xt = X0 +

∫ t

0

b(s,Xs, Ys, Zs)ds+

∫ t

0

σ(s,Xs, Ys, Zs)dws,

Yt = g(XT ) +

∫ T

t

f(s,Xs, Ys, Zs)ds−
∫ T

t

Zsdws

9



where X0 = 1 and

b(t, x, y, z) = − 1
2 sin(t+ x) cos(t+ x)(y2 + z),

σ(t, x, y, z) = 1
2 cos(t+ x)(y sin(t+ x) + z + 1),

g(x) = sin(T + x), f(t, x, y, z) = yz − cos(t+ x).

In this case we have the exact solution Yt = sin(t+Xt), Zt = cos2(t+Xt) and Y0 = sin 1 ≈ 0.84147.
Following [1], we conduct comparison of the estimates with and without the asymptotic expansion for
the three algorithms with this example.

Fig 3 and Fig 4 depict the comparison of the original and proposed algorithms and the method using
the asymptotic expansion alone. Here, we compare the result when only the asymptotic expansions of
Y0 and {Yt}t>0 are employed as control variates, denoted as “with Y0&Y,” with the result when the
expansion of Z is solely used, denoted as “with Z,” and with the result when all the expansions are
used in conjunction, denoted as “with AE.” While incorporating the asymptotic expansions of either
Y or Z individually as control variates yields only marginal convergence improvement, their combined
implementation (denoted “with AE”) achieves substantially superior performance relative to the original
method. In contrast, when compared to the method using the expansion alone, the error for Y0 is slightly
larger, which is due to a particular feature of this example. In fact, in this example the ϵ0-order terms
of the expansion are given as

X0
t = X0 +

∫ t

0

0 ds = X0 = 1, (30)

Y 0
t = sin(T + 1) +

∫ T

t

(− cos(s+ 1)) ds = sin(t+ 1), (31)

and hence Y 0
0 = sin(1), which perfectly matches the true solution Y0 = sin(1). Although including the

“correction term” Y 1
0 introduces some error, the performance of the method using the expansion alone

is still better than that of the proposed method. However, even in such cases, the value of the loss
function achieved by the proposed method is much smaller than that of the method using the expansion
alone.

Figure 3: Results for Example 2 by the original method (indicated as “original”), the asymp-
totic expansion (indicated as “only AE”) and several versions of the proposed method
(indicated as “Y0&Y”, “with Z” and “with AE”). The value of the loss function is plotted
against computational time on the horizontal axis: d = 1
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Figure 4: Results for Example 2 by the original method (indicated as “original”), the asymp-
totic expansion (indicated as “only AE”) and several versions of the proposed method (in-
dicated as “Y0&Y”, “with Z” and “with AE”). The error for the value of Y0 is plotted against
computational time on the horizontal axis: d = 1

For high-dimensional cases, [1] provides Example 4 in Section 5.4. However, we do not use this
example, since it is easily shown by Ito’s Lemma that any choice of Z with some regularity conditions
satisfies this equation, and applying our asymptotic expansion finds one of the exact solutions.

Next, we see another example found in Horst et al. [37] for coupled FBSDEs with Z in the coefficient
for X with d = 6. This example is closely related to one of the most important problems in finance,
namely portfolio optimization in incomplete markets.

Example 3. For the forward SDEs for θt ∈ Rd1 and Ht, Xt ∈ R, we have

θt = θ0 +

∫ t

0

µθ(s, θs)ds+

∫ t

0

σθ(s, θs)dw
H
s , (32)

Ht = H0 +

∫ t

0

µH(s,Hs)ds+

∫ t

0

σH(s,Hs)dw
O
s , (33)

Xt = X0 +
1

1− γ

∫ t

0

Xs(Z
H
s + θs)

⊤θsds+
1

1− γ

∫ t

0

Xs(Z
H
s + θs)

⊤dwH
s (34)

where µθ : [0, T ]×Rd1 → Rd1 , µH(s, h) : [0, T ]×R → R, σθ : [0, T ]×Rd1 → Rd1×d1 , σH : [0, T ]×R → Rd2

and w⊤ = (wH,⊤, wO,⊤) = (w1, . . . , wd1
, wd1+1, . . . , wd1+d2

) is orthogonal (d1+d2)-dimensional Wiener
process.

Then, the backward SDE is given by

Yt = −(1− γ) ln

(
1 +

min(HT , H̄)

XT

)
− 1

2

∫ T

t

(
− γ

1− γ
|ZH

s + θs|2 − |Zs|2
)
ds−

∫ T

t

Z⊤
s dws

where ZH
t := (Z1,t, . . . , Zd1,t)

⊤, Zt := (Z1,t, . . . , Zd1,t, Zd1+1,t, . . . , Zd1+d2,t)
⊤ and H̄ ∈ R+.

This fully-coupled FBSDE appears in solving the portfolio optimization problem such as

sup
π

E
[
(Xπ

T +min(HT , H̄))γ

γ

]
where

Xπ
t = x+

∫ t

0

Xπ
s π

⊤
s dSs, πi,t =

1

1− γ
(Zi,t + θi,t) (35)
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for i = 1, . . . , d1 and the market securities S are driven by wH and the other risk from wO is unhedgable.
In contrast to the previous two examples, to our best knowledge, the exact solution to this FBSDE system
is hard to obtain, while its existence is guaranteed by [37, Theorem 5.9].

Especially, we set

µθ,i(t, θ) = κ(θ̄i − θi), σθ,ij(t, θ) =

{
σ̄i, i = j,
0, i ̸= j

µH(t, h) = µ̄Hh, σH(s, h) = σ̄Hh

with d2 = 1(i.e. wO = wd1+1) and κ, σ̄i, σ̄H > 0, θ̄i, µ̄H ∈ R. Thus, θ is Gaussian and HT is lognormal.
Moreover, instead of expanding (33) and (34) directly, we expand their log-transformation;

ht = h0 +

∫ t

0

(µ̄H − σ̄2
H

2
)ds+

∫ t

0

σ̄HdwO
s ,

xt = x0 +

∫ t

0

(
1

1− γ
(ZH

s + θs)
⊤θs −

1

2(1− γ)2
|ZH

s + θs|2
)
ds

+
1

1− γ

∫ t

0

(ZH
s + θs)

⊤dwH
s

where ht := lnHt and xt := lnXt. The idea behind this transformation is that the original processes
Ht, Xt seem to follow lognormal-like distributions in our setting, whereas their first-order expansions
are normally distributed. It is confirmed in several numerical examples that this transformation slightly
improves the performance of the proposed method, which are available upon request.

Fig 5 and Fig 6 presents a comparison of the results for Algo.1 in Example 3. The parameters are
set to be as follows; γ = 0.5, θi,0 = θ̄i ≡ 0.2, σ̄i ≡ 0.1, κ = 0.695; H0 = 1, µ̄H = 0.005, σ̄H = 0.1; d1 = 5
and T = 1. In this example the exact solution is not available anymore. Moreover, in practice, the
value of Y0 (and the maximum expected utility achieved with the true optimal portfolio) is often of
secondary interest. Instead, the focus is on which portfolio offers the greatest expected utility compared
to other portfolios. In this sense, the expected utility achieved with the portfolio obtained from the
numerical solution of Z via (35) is estimated by the out-of-sample-path average (using 105 paths for
this computation) and we replace the result for Y0 by that for this criterion.

Figure 5: Results for Example 3 by the original method (indicated as “original”), the
asymptotic expansion (indicated as “only AE”) and the proposed method (indicated as
“with AE”). The value of the loss function is plotted against computational time on the horizontal
axis: d1 + d2 = 5 + 1
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Figure 6: Results for Example 3 by the original method (indicated as “original”), the
asymptotic expansion (indicated as “only AE”) and the proposed method (indicated as
“with AE”). The value of the expected utility achieved with the estimated portfolio is plotted against
computational time on the horizontal axis: d1 + d2 = 5 + 1

As seen in the figures, the proposed method not only resulted in a notable improvement in the value
of the loss function, but also in the expected utility compeared to the original method and the method
using the expansion alone. Furthermore, the use of the asymptotic expansions as the prior knowledge
significantly improves the stability of the computation in the following sense. In the original version of
Algo.1, [1] proposes the random selection of the initial value for the learning process for Y0. Nevertheless,
if the aforementioned approach is employed, whereby the initial value is generated from a range of [−2, 2]
as proposed in [1], it is observed that 90 out of 100 trials fails to update the neural network within the
first 100 learning steps. This phenomenon is observed consistently across a range of parameter settings,
which are not reported here for brevity. In contrast, when Y AE,1

0 is used as the input, the computation
is successful in updating the network without exceptions. This stability in computation is noteworthy.

In summary, in all the examples presented in this section, the proposed method improves the effi-
ciency of the algorithm by [1] and the method using the asymptotic expansion alone.

6 Concluding remarks

In this paper, we proposed the new method which combines the algorithm proposed by [1] for coupled
FBSDEs and the asymptotic expansions of those FBSDEs as the control variates for learning of the
neural networks. In the examples including ones with high dimensionality or the financially important
implication, it is numerically confirmed that our proposed method performed better than the original
algorithm. This improvement was not only for the values of the loss functions or the errors, but for the
stability of the algorithm.

For future research, we refer to the followings: First, we try to give a rigorous error bound which
was not done in this paper. Second, we can incorporate higher-order terms than one in the asymptotic
expansions. From the fact that the level to which the values of the loss function and the error for Y0

converge was improved in Algo.1 with the stochastic control variate Y AE,1, it is expected that the use
of these higher-order random variables as additional control variates will further improve the efficiency
of the proposed method. Finally, we are interested in other examples with financial implication such as
general equilibrium in incorporate markets.
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