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Abstract

For global multi-asset fund managers, reflecting their macroeconomic views in the prediction of expected

interest rates across countries, exchange rates, and equity prices in a manner consistent with economic theory

is challenging. The existing literature has yet to provide an established multi-currency model that is flexible

enough to incorporate such views into the prediction of future asset price dynamics.

To address this problem, this paper proposes a novel multi-currency incomplete market model in which

agents in each country have logarithmic utility but differ in their time preferences and subjective beliefs,

within a market equilibrium framework, namely, supply and demand equilibrium.

With only a few exogenous inputs, such as each country’s output process and agents’ preference pa-

rameters, the model endogenously determines equilibrium interest rates, exchange rates, and stock prices,

along with optimal consumption and portfolios. Thus, the model enables us to (i) flexibly incorporate cross-

country differences in investors’ time preferences and macroeconomic outlooks, and (ii) examine how these

differences affect equilibrium interest rates and asset prices, including stock prices and exchange rates.

Moreover, by applying the particle filtering method within a state-space framework based on the two-

country, two-currency version of the model to Japanese and U.S. market data (equity index futures, short-

term interest rates, and the exchange rate), the model not only fits the observed dynamics of equity indices,

short rates, and the exchange rate, but also effectively estimates the dynamics of home-country biases and

latent economic factors, which can be utilized in making investment decisions in asset management practice.

Keywords: multi-currency equilibrium model, incomplete market, subjective beliefs, multi-asset

investment, state-space model
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1. Introduction and Related Work

1.1. Introduction

The globalization of financial markets has led investors to increasingly allocate capital across bor-

ders, seeking diversification and enhanced returns. This trend has fueled the rapid growth of multi-asset

investment funds, which invest in multiple assets across multiple countries and now play a significant5

role in both institutional and individual portfolios worldwide. For example, in the U.S., target-date

multi-asset funds are frequently used as default investment options in 401(k) retirement plans.

However, when operating such funds, even if the manager holds macroeconomic views, mapping

them into predictions for each country’s expected interest rates, exchange rates, and equity prices is

challenging: these variables cannot be assigned arbitrarily but must be specified in a manner consis-10

tent with economic theory. Unfortunately, to the best of our knowledge, the existing literature has

not provided an established multi-currency asset allocation framework that is sufficiently flexible to

incorporate such a manager’s macroeconomic views. As a result, multi-asset fund managers some-

times abandon rational asset allocation and resort to ad hoc methods (e.g., a naïve 25%-25%-25%-25%

allocation across domestic equities, foreign equities, domestic bonds, and foreign bonds).15

To address this problem, we develop a novel multi-currency incomplete market model in which

agents in each country have logarithmic utility but may differ in time preferences and subjective beliefs

within a market equilibrium framework, namely, supply and demand equilibrium. This framework uses

only a few exogenous inputs, such as each country’s output process and agents’ preference parameters,

and endogenously delivers equilibrium interest rates, exchange rates, and stock prices, along with20

optimal consumption and portfolios. With the model, we can flexibly capture cross-country differences

in investors’ time preferences and macroeconomic outlooks, and analyze how those differences influence

equilibrium macro variables. Thus, the model enables practitioners to examine how investors’ time

preferences and macroeconomic views affect equilibrium asset prices in a manner consistent with the

equilibrium framework, in which supply matches demand.25

The main contributions of this study are as follows: (i) First, we extend an incomplete equilibrium

model that incorporates heterogeneous time preferences and subjective beliefs to a multi-currency

environment. (ii) Second, we obtain closed-form expressions for optimal consumption, investment

strategies, interest rates, market prices of risk, and stock prices in equilibrium. (iii) Third, we empiri-

cally estimate transitions in agents’ subjective beliefs and latent factors, which are reasonably explained30

by market reactions to past economic events, and demonstrate the flexibility of our model by fitting

it to real-market data using state-space modeling and particle filtering.

The remainder of the paper is organized as follows. Subsection 1.2 reviews the related literature.

Section 2 introduces the multi-currency equilibrium model in an incomplete market setting, allowing for

agent heterogeneity in time preferences and subjective beliefs. Section 3 specializes the multi-currency35

model to a two-currency case and conducts an empirical study using Japanese and U.S. market data,
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demonstrating the model’s applicability to actual market data. Section 4 concludes this paper and

discusses future research directions.

1.2. Related Work

The general equilibrium model is a major topic in mathematical finance. Early foundational work40

includes Cox et al. (1985), who developed a continuous-time general equilibrium model for a sim-

ple but complete economy and analyzed asset price dynamics. Epstein & Miao (2003) examined a

pure-exchange, continuous-time economy with two heterogeneous agents and complete markets under

Knightian uncertainty. Žitković (2012) established existence and uniqueness results for stochastic equi-

libria in a class of incomplete continuous-time financial markets, where agents are exponential utility45

maximizers with heterogeneous risk aversion and general Markovian random endowments. Christensen

& Larsen (2014) derive closed-form solutions for the equilibrium interest rate and market price of risk

processes in an incomplete continuous-time market which has a finite number of heterogeneous ex-

ponential utility investors. Larsen & Sae-Sue (2016) construct continuous-time equilibrium models

based on a finite number of exponential utility investors. For comprehensive textbook treatments,50

see Karatzas & Shreve (1998) for rigorous analysis of complete markets driven by Brownian motions,

and Jarrow (2018) for discussion of incomplete markets and trading constraints in a semimartingale

framework.

Studies focusing on the individual optimal investment problem include the following. Temocin

et al. (2018) considered the optimal portfolio problem with minimum guarantee protection in a de-55

fined contribution pension scheme using a classical stochastic control approach. Chen et al. (2021)

studied optimal investment problems for a pool of investors demanding minimum guarantees under two

financial market settings. Ieda (2022) investigated a portfolio optimization problem with the following

features: (i) a no-short selling constraint; (ii) a leverage constraint; and (iii) a performance criterion

based on the lower mean square error between the investor’s wealth and a predetermined target wealth60

level. Chen et al. (2025) studied the optimal investment and consumption strategy for an agent who

has the addictive habit formation preference. Hu et al. (2025) researched optimal investment and

consumption problems with various utilities, in a regime switching market with random coefficients

and possibly subject to non-convex constraints. As a practitioner-authored paper from T. Rowe Price,

Aboagye et al. (2024) extended the standard optimal investment problem for target date funds and65

estimated that their enhancements deliver an additional 5-6% per year in risk-adjusted spending.

In recent years, the following papers have addressed multi-agent settings and the mathematical

techniques required in such contexts. Saito & Takahashi (2021) addressed sup-inf problems aris-

ing from agents’ best- and worst-case scenario choices of probability measures, a situation frequently

encountered in incomplete equilibrium models. Saito & Takahashi (2022) introduced a new portfolio70

optimization problem for a single agent facing model uncertainty, employing Malliavin calculus to han-

dle uncertainties in fundamental risks. Kizaki et al. (2024a) proposed an equilibrium-based multi-agent
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model in a complete market, allowing agents to have heterogeneous sentiments regarding fundamental

risks modeled by Brownian motion. Kizaki et al. (2024b) extended this line of research to incom-

plete markets, developing a multi-agent equilibrium model with heterogeneous risk preferences and75

income/payout profiles. Maggistro et al. (2025) considered a multi-agent portfolio optimization model

with life insurance for two players with random lifetime under a dynamic game approach. Saito &

Takahashi (2025) contributed by presenting a multi-agent equilibrium model in an incomplete market,

incorporating a super-long discount rate for insurance companies and explicitly modeling government

financing and central bank operations.80

Building on the incomplete multi-agent equilibrium frameworks developed by Kizaki et al. (2024b)

and Saito & Takahashi (2025), we extend the model to a multi-currency environment. The proposed

framework is highly general and flexible, allowing for a realistic representation of international invest-

ment environments. This enables a systematic analysis of how cross-country differences in preferences

and beliefs influence key financial variables such as equity prices, interest rates, and exchange rates.85

2. Multi-Currency Model

This section develops an incomplete multi-currency general equilibrium model, allowing for het-

erogeneous agents with distinct time preferences and subjective beliefs. Each country is populated

by many agents and endowed with a financial market consisting of many stocks and a single money

market account, together with a goods market for a single domestic good. Also, we consider a finite90

time horizon [0, T ] (T > 0) and work on a filtered probability space (Ω,F , {Ft}0≤t≤T , P ) that satisfies

the usual conditions. The uncertainty in the economy is modeled by a m-dimensional Brownian motion

Wt defined on this space, with the filtration {Ft}0≤t≤T generated by Wt.

2.1. Model Setting

We consider N countries, where each country i (i = 1, . . . , N) has Li agents, Ki stocks, and95

one money market account. Thus, an agent in country i can invest in
∑N

j=1 K
j stocks (including

foreign stocks), (N − 1) foreign money market accounts and one riskless money market account.

Here, to consider an incomplete market, we assume that m is greater than the number of risky assets∑N
j=1 K

j+N−1. Also, we consider exogenously given dividend processes for the k-th stock in country

i δi,kt , driven by a latent factor process Yt, are given by:100

dδi,kt = δi,kt

{
µi,k
δ (Yt, t)dt+ σi,k

δ (Yt, t) · dWt

}
, (1)

dYt = µy(Yt, t)dt+ σy(Yt, t) · dWt, (2)

where µi,k
δ (Yt, t) and µy(Yt, t) denote the drift terms and σi,k

δ (Yt, t) and σy(Yt, t) represent m × 1-

dimensional volatility vectors, respectively. In addition, we introduce the aggregate dividend process
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δit for country i:

δit =

Ki∑
k=1

δi,kt , (3)

µi
δ(Yt, t) =

Ki∑
k=1

δi,kt

δit
µi,k
δ (Yt, t), (4)

σi
δ(Yt, t) =

Ki∑
k=1

δi,kt

δit
σi,k
δ (Yt, t), (5)

dδit = δit
{
µi
δ(Yt, t)dt+ σi

δ(Yt, t) · dWt

}
, (6)

where µi
δ(Yt, t) and σi

δ(Yt, t) are the drift and m × 1-dimensional volatility of the aggregate dividend

process, respectively.105

The stock price process for the k-th stock in country i and aggregate stock price process Si
t are

specified as:

dSi,k
t = Si,k

t

{
µi,k
S (Yt, t)dt+ σi,k

S (Yt, t)dWt

}
− δi,kt dt; Si,k

T = 0, (7)

Si
t =

Ki∑
k=1

Si,k
t , (8)

dSi
t = Si

t

{
µi
S(Yt, t)dt+ σi

S(Yt, t)dWt

}
− δitdt; Si

T = 0, (9)

where µi,k
S (Yt, t), µi

S(Yt, t), σi,k
S (Yt, t), and σi

S(Yt, t) are the drift and 1×m-dimensional volatility terms.

Moreover, the money market account in country i, denoted by Bi
t, is given by:

dBi
t = ritB

i
tdt, (10)

where rit is the interest rate in country i.110

Next, we consider the exchange rate process qi,jt between countries i and j, where qi,jt denotes the

relative price of one unit of country j’s consumption good in terms of country i’s consumption good,

evolving according to the following stochastic differential equation (SDE):

dqi,jt = qi,jt

{
µi,j
q,tdt+ σi,j

q,tdWt

}
(11)

= qi,jt

{(
rit − rjt

)
dt+

(
θit − θjt

)
·
(
dWt + θitdt

)}
, (12)

where µi,j
q,t is the drift term, σi,j

q,t is the 1 × m-dimensional volatility term, and θit and θjt are the

m× 1-dimensional market price of risk processes in countries i and j, respectively. This follows from115

no-arbitrage condition, which requires that the drift of the exchange rate µi,j
q,t is given by the difference

in interest rates between the two countries, rit − rjt , and the volatility is given by the difference in the

market prices of risk, θit − θjt . When i = j, we have qi,it = 1. Note that, if (σi
tσ

i⊤
t )−1 exists, θit are

defined as follows:

θit = σi⊤
t (σi

tσ
i⊤
t )−1

(
µi
t − rit1

)
, (13)
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where σi
t is a (

∑N
i=1 K

i +N − 1)×m matrix given by



σ1,1
S,t + σi,1

q,t

· · ·

σN,KN

S,t + σi,N
q,t

σi,1
q,t

· · ·

σi,N
q,t


, where each row corresponds120

to a risky asset and the row associated with σi,i
q,t (the country i’s money market account) is omitted.

Similarly, µi
t is a (

∑N
i=1 K

i +N − 1)× 1 vector given by



µ1,1
S,t + µi,1

q,t + σ1,1
S,t(σ

i,1
q,t)

⊤

· · ·

µN,KN

S,t + µi,N
q,t + σN,KN

S,t (σi,N
q,t )

⊤

r1t + µi,1
q,t

· · ·

rNt + µi,N
q,t


. 1 is the

(
∑N

i=1 K
i +N − 1)× 1 vector of ones.

2.2. Optimal Consumption Problem

This subsection formulates and solves each agent’s optimal consumption problem in the multi-125

currency model. We introduce following notations about portfolio position for the l-th agent in country

i (all values are denominated by one unit of country i’s consumption good):

• π
i,l,(j,k)
t : investment value in stock k of country j,

• πi,l,j
t :=

∑Kj

k=1 π
i,l,(j,k)
t : total investment value in country j’s stock market,

• πi,l,N+j
t : investment value in country j’s money market account,130

• πi,l
t = (π

i,l,(1,1)
t , . . . , π

i,l,(N,KN )
t , πi,l,N+1

t , . . . , πi,l,2N
t )⊤: vector of all risky positions except the

domestic (country i) money market account,

Note that the pair (πi,l
t , πi,l,N+i

t ) represents the agent’s investment strategy for all securities. Also,

while πi,l,j (j = 1, . . . , N) and πi,l,N+j (j = 1, . . . , N) denote the amounts invested in country j’s

stocks and money market account, we sometimes collectively denote them by πi,l,j for j = 1, . . . , 2N .135

Then, the agent’s optimization problem is formulated as follows:

max
πi,l
t ,πi,l,N+i

t ,{ci,l,jt }j=1,...,N

E

[∫ T

0

ui,l
t (ci,l,1, ..., ci,l,N )dt

]
, (14)

s.t. dXi,l
t =

N∑
j=1

Kj∑
k=1

π
i,l,(j,k)
t

d(qi,jt Sj,k
t ) + qi,jt δj,kt dt

qi,jt Sj,k
t

+

N∑
j=1

πi,l,N+j
t

d(qi,jt Bj
t )

qi,jt Bj
t

−

 N∑
j=1

qi,jt ci,l,jt

 dt; Xi,l
0 = xi,l

0 > 0, (15)

Xi,l
t ≥ 0; ci,l,jt ≥ 0; ∀t ∈ [0, T ], (16)
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where ci,l,jt is the consumption of the agent for a good in country j, Xi,l
t is the wealth process of the

agent, and xi,l
0 is the initial wealth of the agent. Here, Xi,l

t =
∑2N

j=1 π
i,l,j
t .

The utility function ui,l
t (ci,l,1, ..., ci,l,N ) in (14) is given by:

ui,l
t (ci,l,1, ..., ci,l,N ) = ηi,lt αi,l

t

 N∑
j=1

γi,l,j log ci,l,jt

 ; γi,l,j ∈ [0, 1], (17)

αi,l
t = e−βi,lt, (18)

where ηi,lt is the subjective belief, γi,l,j is the preference parameter for goods with
∑N

j=1 γ
i,l,j = 1 and140

βi,l is the time preference parameter of the agent. The subjective belief ηi,lt is defined as:

ηi,lt = exp

(∫ t

0

λi,l
s · dWs −

1

2

∫ t

0

|λi,l
s |2ds

)
; λi,l

s = λi,l(Ys, s), (19)

where λi,l(Ys, s) is the subjective view of agent. Here, λi,l represents the subjective views of the agent

l in country i on the Brownian motion Wt. Namely, for the probability measure P i,l defined as

dP i,l

dP
= ηi,lT

by Girsanov’s theorem, WP i,l defined as dWP i,l

t = dWP
t − λi,l

t dt is a P i,l-Brownian motion and λi,l

indicates the agent l’s bias on the Brownian motion under the physical measure P .145

Constraint (15) represents the wealth evolution of the agent, which consists of the returns from

investments in risky assets and money market accounts, minus the consumption. Constraint (16)

represents the budget constraint and non-negative condition for wealth and consumption, respectively.

To solve the optimization problem, defined by (14), (15), and (16), we first rewrite the constraints

as follows:150

dXi,l
t =

N∑
j=1

Kj∑
k=1

π
i,l,(j,k)
t

d(qi,jt Sj,k
t ) + qi,jt δj,kt dt

qi,jt Sj,k
t

+

N∑
j=1

πi,l,N+j
t

d(qi,jt Bj
t )

qi,jt Bj
t

−

 N∑
j=1

qi,jt ci,l,jt

 dt (20)

= ritX
i,l
t dt+ πi,l⊤

t σi
t(dWt + θitdt)−

 N∑
j=1

qi,jt ci,l,jt

 dt. (21)

Next, we consider the admissibility of the consumption process. The admissibility derives from the

condition:

Xi,l
t ≥ 0; ∀t ∈ [0, T ]. (22)

This means that the total wealth of the agent must be non-negative at all times, which is a standard

assumption in financial models to prevent bankruptcy. Here, we consider the (subjective) state price

density process Hi,l
t :155

Hi,l
t = Zθi,l

t /Bi
t, (23)

Zθi,l

t = exp

{
−1

2

∫ t

0

|θis + νi,ls |2ds−
∫ t

0

(θis + νi,ls ) · dWs

}
. (24)
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Here, Zθi,l

t is the Radon-Nikodym derivative induced by the agent’s beliefs, which consists of common

part θit and the agent specific part νi,lt . The νi,lt is an orthogonal vector of the risky assets’ volatility

vector space range
(
σi⊤
t

)
, i.e., σi

tν
i,l
t = 0. When the market is complete, we have νi,lt = 0. Then, we

obtain the following relationship:

d(Hi,l
t Xi,l

t ) = −Hi,l
t (

N∑
j=1

qi,jt ci,l,jt )dt+Hi,l
t

{
πi,l⊤
t σi

t −Xi,l
t (θis + νi,ls )⊤

}
dWt. (25)

Then, we have:160

Hi,l
T Xi,l

T +

∫ T

0

Hi,l
t (

N∑
j=1

qi,jt ci,l,jt )dt = xi,l
0 +

∫ T

0

Hi,l
t

{
πi,l⊤
t σi

t −Xi,l
t (θis + νi,ls )⊤

}
dWt. (26)

Here, since wealth and consumption are non-negative, the left-hand side of (26) is lower bounded.

Thus, local martingale on the right-hand side of (26) must be a supermartingale. Taking expectations

on both sides, we have:

E

∫ T

0

Hi,l
t

 N∑
j=1

qi,jt ci,l,jt

 dt

 ≤ xi,l
0 . (27)

Then, we consider the following admissible set of consumption processes:

Ai,l =

(ci,l,jt

)
j=1,...,N

| ci,l,jt ≥ 0,E

∫ T

0

Hi,l
t

 N∑
j=1

qi,jt ci,l,jt

 dt

 ≤ xi,l
0 , ∀Hi,l

t

 , (28)

where the non-negative condition for consumption in Ai,l is automatically satisfied, since we adopt the165

log utility function.

Summarizing the above discussion, directly addressing the original optimization is difficult, thus,

we instead consider the following consumption-only optimization problem:

max
ci,l,jt

E

∫ T

0

ηi,lt αi,l
t

 N∑
j=1

γi,l,j log ci,l,jt

 dt

, (29)

s.t. E

∫ T

0

Hi,l
t

 N∑
j=1

qi,jt ci,l,jt

 dt

 ≤ xi,l
0 , ∀Hi,l

t satisfying σi
tν

i,l
t = 0. (30)

After we find the optimal solution ci,l,j,∗t for (29) under (30), we confirm that there exists an

investment strategy (πi,l,∗, πi,l,N+i,∗
t ) achieving the optimal consumption because, unlike the complete170

market case, the existence of the investment strategy is not guaranteed in incomplete markets. By this

confirmation, we ensure that the pair (ci,l,j,∗t , (πi,l,∗, πi,l,N+i,∗
t )) constitutes a solution to the original

problem (14), (15), and (16).

To proceed, we define the Lagrangian as follows:

L = E

∫ T

0

ηi,lt αi,l
t (

N∑
j=1

γi,l,j log ci,l,jt )dt

+ yi,l

xi,l
0 −E

∫ T

0

Hi,l
t (

N∑
j=1

qi,jt ci,l,jt )dt

 , (31)

8



where yi,l is the Lagrange multiplier. Then, the agent’s optimization problem can be rewritten as175

following sup-inf problem:

sup
ci,l,jt

inf
yi,l,νi,l

t ,σi
tν

i,l
t =0

L(ci,l,jt , yi,l, νi,lt ). (32)

Since the market is incomplete, there exist multiple risk-neutral measures. Thus, each agent chooses

the consumption process under the worst case scenario among all measures νi,lt , which is represented

by the infimum over νi,lt in the above problem.

To solve the sup-inf problem, we reformulate it as the following dual (inf-sup) problem:180

inf
yi,l,νi,l

t ,σi
tν

i,l
t =0

sup
ci,l,jt

L(ci,l,jt , yi,l, νi,lt ). (33)

The solution to the dual problem (33) can be obtained by Proposition 1.

Proposition 1. ci,l,j,∗t , νi,lt , and yi,l set as follows solve the inf-sup dual problem (33).

ci,l,j,∗t =
γi,l,jαi,l

t Bi
tZ

i,l
t

yi,lZθi

t qi,jt

, (34)

νi,lt = −λ̂i,l,⊥
t , (35)

yi,l =
1− e−βi,lT

βi,lxi,l
0

. (36)

Here, Zθi

t and Zi,l
t are defined as follows:

Zθi

t = exp

(
−
∫ t

0

θis · dWs −
1

2

∫ t

0

|θis|2ds
)
;Zθi

0 = 1, (37)

Zi,l
t = exp

(∫ t

0

λ̂i,l
s · dWs −

1

2

∫ t

0

|λ̂i,l
s |2ds

)
;Zi,l

0 = 1, (38)

and λ̂i,l,⊥
t is the projection of λi,l

t onto the orthogonal space of range
(
σi⊤
t

)
. Here, we assume that λi,l

t

admits the following decomposition: λi,l
t = λ̂i,l

t ⊕ λ̂i,l,⊥
t , where λ̂i,l

t ∈ range(σi⊤
t ) and λ̂i,l,⊥

t lies in its185

orthogonal space.

Proof. See Appendix A.

We next confirm that the dual solution also solves the original optimization problem, which is

guaranteed by the following Theorem 1.

Theorem 1. The solution of the dual problem (33), ci,l,j,∗t , νi,lt , and yi,l, is also a solution of the190

primal problem (32).

ci,l,j,∗t =
γi,l,jαi,l

t Bi
tZ

i,l
t

yi,lZθi

t qi,jt

, (39)

νi,lt = −λ̂i,l,⊥
t , (40)

yi,l =
1− e−βi,lT

βi,lxi,l
0

. (41)

9



Proof. See Appendix B.

Finally, the following Theorem 2 shows that the investment strategy (πi,l,∗
t , πi,l,N+i,∗

t ) achieves the

optimal consumption ci,l,j,∗t , which means that ci,l,j,∗t and (πi,l,∗
t , πi,l,N+i,∗

t ) are the optimal solution

for the original consumption problem defined in (14), (15), and (16).195

Theorem 2. Under the assumption that rank
(
σi
t

)
=
∑N

1 Ki + N − 1, i.e. (σi
tσ

i⊤
t )−1 exists, the

optimal wealth Xi,l,∗
t and investment strategy (πi,l,∗

t , πi,l,N+i,∗
t ) achieving the optimal consumption

ci,l,j,∗t is given by:

Xi,l,∗
t =

e−βi,lt − e−βi,lT

1− e−βi,lT

(
xi,l
0 Bi

tZ
i,l
t

Zθi

t

)
, (42)

πi,l,∗
t = Xi,l,∗

t (σi
tσ

i⊤
t )−1σi

t(θ
i
t +

ˆ
λi,l
t ), (43)

πi,l,N+i,∗
t = Xi,l,∗

t − πi,l
t · 1. (44)

Proof. See Appendix C.

Having established the explicit solutions for each agent’s optimal consumption and investment200

strategies in the multi-currency setting, we now turn to the considerations of equilibrium asset prices

and market clearing. In the following Section, we derive the equilibrium interest rates and market

prices of risk by imposing goods market clearing conditions.

2.3. Interest Rate, Market Price of Risk, and Goods Market Clearing

This subsection introduces Theorem 3, which determines the equilibrium interest rate rit and market205

price of risk θit based on the goods market clearing conditions given by:
N∑
j=1

Lj∑
l=1

cj,l,it = δit; ∀i = 1, ..., N. (45)

Theorem 3. Equilibrium interest rate rit and market price of risk θit are given by:

rit =
(
µi
δ,t − |σi

δ,t|2
)
+

N∑
j=1

Lj∑
l=1

(
αj,l

t γj,l,i

yj,lqj,i0

)
Zj,l
t∑N

f=1

∑Lf

g=1

(
αf,g

t γf,g,i

yf,gqf,i0

)
Zf,g
t

βj,l
t

+σi
δ,t ·

N∑
j=1

Lj∑
l=1

(
αj,l

t γj,l,i

yj,lqj,i0

)
Zj,l
t∑N

f=1

∑Lf

g=1

(
αf,g

t γf,g,i

yf,gqf,i0

)
Zf,g
t

λ̂j,l
t , (46)

θit = σi
δ,t −

N∑
j=1

Lj∑
l=1

(
αj,l

t γj,l,i

yj,lqj,i0

)
Zj,l
t∑N

f=1

∑Lf

g=1

(
αf,g

t γf,g,i

yf,gqf,i0

)
Zf,g
t

λ̂j,l
t , (47)

Proof. The relationship between Zθi

/Bi
t and Zθj

/Bj
t is expressed as:

qi,jt = qi,j0 exp

[∫ t

0

(
ris − rjs +

1

2
|θis|2 −

1

2
|θjs|2

)
ds+

∫ t

0

(θis − θjs) · dWs

]
(48)

= qi,j0

Bi
t

Zθi

t

Zθj

t

Bj
t

. (49)

10



By substituting ci,l,j,∗ and (49) into the goods market clearing conditions (45), we have:

Zθi

t

Bi
t

=
1

δit

N∑
j=1

Lj∑
l=1

γj,l,iαj,l
t Zj,l

t

yj,lqj,i0

; dZθi

= −Zθi

t θit · dWt; Zθi

0 = 1, (50)

dZj,l
t = Zj,l

t λ̂j,l
t · dWt; Zj,l

0 = 1; λj,l
t = λ̂j,l

t ⊕ λ̂j,l,⊥
t , λ̂j,l

t ∈ range(σj⊤
t ). (51)

By differentiating both sides of equation (50) and comparing the coefficients, we can derive the ex-210

pressions for the interest rate and market price of risk.

rit =
(
µi
δ,t − |σi

δ,t|2
)
+

N∑
j=1

Lj∑
l=1

(
αj,l

t γj,l,i

yj,lqj,i0

)
Zj,l
t∑N

f=1

∑Lf

g=1

(
αf,g

t γf,g,i

yf,gqf,i0

)
Zf,g
t

βj,l
t

+σi
δ,t ·

N∑
j=1

Lj∑
l=1

(
αj,l

t γj,l,i

yj,lqj,i0

)
Zj,l
t∑N

f=1

∑Lf

g=1

(
αf,g

t γf,g,i

yf,gqf,i0

)
Zf,g
t

λ̂j,l
t , (52)

θit = σi
δ,t −

N∑
j=1

Lj∑
l=1

(
αj,l

t γj,l,i

yj,lqj,i0

)
Zj,l
t∑N

f=1

∑Lf

g=1

(
αf,g

t γf,g,i

yf,gqf,i0

)
Zf,g
t

λ̂j,l
t . (53)

Moreover, we obtain the following expression for the volatility term of qi,jt :

σi,j⊤
q,t = θit − θjt = σi

δ,t − σj
δ,t −

N∑
j=1

Lj∑
l=1

(
αj,l

t γj,l,i

yj,lqj,i0

)
Zj,l
t∑N

f=1

∑Lf

g=1

(
αf,g

t γf,g,i

yf,gqf,i0

)
Zf,g
t

λ̂j,l
t

+

N∑
i=1

Li∑
l=1

(
αi,l

t γi,l,j

yi,lqi,j0

)
Zi,l
t∑N

f=1

∑Lf

g=1

(
αf,g

t γf,g,j

yf,gqf,j0

)
Zf,g
t

λ̂i,l
t . (54)

2.4. Stock Valuation and Financial Market Equilibrium

This subsection focuses on the stock valuation and financial market clearing. The aggregate and215

individual stock prices Si
t and Si,k

t are given by the following Theorem 4.

Theorem 4. Equilibrium aggregate and individual stock prices are given by:

Si
t =

δit∑N
j=1

∑Lj

l=1
γj,l,ie−βj,ltZj,l

t xj,l
0 βj,l

qj,i0 (1−e−βj,lT )

N∑
j=1

Lj∑
l=1

γj,l,iZj,l
t (e−βj,lt − e−βj,lT )xj,l

0

qj,i0 (1− e−βj,lT )
, (55)

Si,k
t =

δit∑N
j=1

∑Lj

l=1
γj,l,iαj,l

t Zj,l
t

yj,lqj,i0

Et

∫ T

t

δi,ks

δis

N∑
j=1

Lj∑
l=1

γj,l,iαj,l
s Zj,l

s

yj,lqj,i0

ds

 . (56)

Proof. See Appendix D.

Next, we confirm the market clearing in the financial market by Proposition 2.
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Proposition 2. Under the assumption that
(
σj,k
S,t + σ1,j

q,t

)
and σ1,j

q,t are independent volatility vectors,220

equilibrium stock price Si,k
t and optimal investment amounts (π

j,l,(i,k),∗
t and πj,l,N+i,∗

t ) satisfy the

following market clearing conditions in financial market based on 1-st country currency.

N∑
j=1

Lj∑
l=1

q1,jt π
j,l,(i,k),∗
t = q1,it Si,k

t ; ∀i = 1, ..., N ; ∀k = 1, ...,Ki, (57)

N∑
j=1

Lj∑
l=1

q1,jt πj,l,N+i,∗
t = 0; ∀i = 1, ..., N. (58)

Proof. See Appendix E.

Here, we remark on the recursive structure in Theorem 4 that the stock prices Si,k
t are determined

by Zi,l
t

(
(i, l) = (1, 1), . . . , (N,LN )

)
, which includes λ̂i,l

t . Since λ̂i,l
t is the projection of the exogenously225

given subjective view λi,l
t onto the risky assets’ volatility vector space range

(
σi⊤
t

)
, λ̂i,l

t also depends

on the volatility of Si,k
t . Thus, when we simulate the model, we need to properly find λ̂i,l

t so that the

recursive structure in Theorem 4 is satisfied.

This recursive structure arises from the incompleteness of the market, which is generated by the

incorporation of different subjective views of agents on fundamental risks represented by Brownian230

motions or equivalently on the expected return of the stock prices Si,k
t . Here, λi,l

t is associated with

some factors that cannot be hedged with the investable assets in the market, which lead to different

state price density processes Hi,l
t = Zθi

t /Bi
t · η

i,l
t /Zi,l

t in their individual optimization problems.

To specify λ̂i,l
t , we need to consider the equilibrium volatility vectors σi,k

S,t provided in Proposition

3.235

Proposition 3. The volatility vector σi,k
S,t is obtained as follows:

σi,k⊤
S,t = σi,k

δ,t +

N∑
j=1

Lj∑
l=1

 Et

[∫ T

t
δi,ks

δis

(
γj,l,iαj,l

s

yj,lqj,i0

)
Zj,l
s ds

]
∑N

f=1

∑Lf

g=1 Et

[∫ T

t
δi,ks

δis

(
γf,g,iαf,g

s

yf,gqf,i0

)
Zf,g
s ds

] −
(

γj,l,iαj,l
t

yj,lqj,i0

)
Zj,l
t∑N

f=1

∑Lf

g=1

(
γf,g,iαf,g

t

yf,gqf,i0

)
Zf,g
t

 λ̂j,l
t . (59)

Proof. See Appendix F.

Here, λ̂i,l
t is the projections onto the space spanned by the stock volatility vectors σj,k

S,t and exchange

rate volatility vectors σi,j
q,t, which means that λ̂i,l

t is a linear combination of these vectors:

λ̂i,l
t =

N∑
j=1

Kj∑
k=1

aj,kt σj,k⊤
S,t +

N∑
j ̸=i

bjtσ
i,j⊤
q,t . (60)

On the other hand, from the Proposition 3, σj,k
S,t can be expressed as linear combinations of σj,k

δ,t and240

λ̂j,l
t as shown in equation (61). Similarly, from (54), σi,j

q,t is expressed as a linear combination of σi
δ,t,
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σj
δ,t and λ̂j,l

t . Since σi
δ,t is also a linear combinations of the volatility vectors σi,k

δ,t (k = 1, ...,Ki) from

(5), σi,j
q,t is expressed as (62).

σj,k⊤
S,t = σj,k

δ,t +

N∑
j=1

Lj∑
l=1

cj,lt λ̂j,l
t , (61)

σi,j⊤
q,t =

Ki∑
k=1

di,kt σi,k
δ,t +

Kj∑
k=1

ej,kt σj,k
δ,t +

N∑
g=1

Lg∑
l=1

fg,l
t λ̂g,l

t . (62)

Therefore, by substituting (61) and (62) into (60) and rearranging terms, it follows that λ̂j,l
t must be

constructed as a linear combination of the output process volatility vectors σi,k
δ,t .245

Concretely, we discuss the simple two-country two-currency model (N = 2, Ki = 1, and Li = 1 for

i = 1, 2) in Section 3.1, where the country subscripts d (domestic) and f (foreign) are used instead of

i = 1, 2, respectively. In this case, (60), (61) and (62) become:

λ̂d
t = A1,1

t σd⊤
S,t +A1,2

t σf⊤
S,t +B1

t σ
⊤
q,t, (63)

λ̂f
t = A2,1

t σd⊤
S,t +A2,2

t σf⊤
S,t +B2

t σ
⊤
q,t, (64)

σd⊤
S,t = σd

δ,t + C1,1
t λ̂d

t + C1,2
t λ̂f

t , (65)

σf⊤
S,t = σf

δ,t + C2,1
t λ̂d

t + C2,2
t λ̂f

t , (66)

σ⊤
q,t = σd

δ,t − σf
δ,t +D1

t λ̂
d
t +D2

t λ̂
f
t , (67)

where Ai,j
t , Bi

t, C
i,j
t and Di

t (i, j = 1, 2) are the coefficients. If this system of equations has a solution,

λ̂d
t , λ̂

f
t , σd⊤

S,t , σ
f⊤
S,t and σ⊤

q,t need to be represented as a linear combination of the σd
δ,t and σf

δ,t. In250

particular, an example case for λ̂d
t and λ̂f

t is provided in equations (100) and (101). Note that,

although Section 3.2 omits a detailed discussion of λd
t for simplicity, once λ̂d

t is specified, the full

subjective belief λd
t can be constructed by adding any vector λ̂d⊥

t orthogonal to the span of σd
δ,t and

σf
δ,t: λd

t = λ̂d
t ⊕ λ̂d⊥

t .

Based on the above discussion, once we specify λ̂j,l
t that satisfies the recursive structure, we confirm255

that the optimal consumption, investment strategy, interest rates, market prices of risk, and stock

prices determined by Theorems 1, 2, 3, and 4 ensure that both the goods and financial markets are

in equilibrium. This establishes the internal consistency and validity of the equilibrium framework

developed in this paper.

Finally, while the discussion so far has been based on real values under the neutrality of money,260

the next subsection briefly confirms that these arguments can be easily extended to the nominal case

by introducing country specific price level processes.

2.5. Nominal Case

This subsection concisely discusses the equilibrium asset pricing in nominal situation. Let pit denote

the (exogenous) price level in country i, evolving as:265

dpit = pit
{
µi
p(Yt, t)dt+ σi

p(Yt, t) · dWt

}
; pi0 > 0. (68)

13



Then, the nominal exchange rate between countries i and j (one unit of currency j equals qn,i,jt

units of currency i) can be expressed as:

qn,i,jt = qi,jt

pit

pjt
. (69)

Thus, its dynamics follow:

dqn,i,jt

qn,i,jt

=
{
rit − rjt + (θit − θjt ) · θit + µi

p,t − µj
p,t + |σj

p,t|2 − σi
p,t · σ

j
p,t + (θit − θjt ) · (σi

p,t − σj
p,t)
}
dt

+(θit − θjt + σi
p,t − σj

p,t) · dWt. (70)

Also, nominal interest rate and market price of risk are obtained by differentiating the nominal

state price density (as seen in the proof of Theorem 3). The nominal state price density satisfies:270

Zθn,i

t

Bn,i
t

=
pi0
pit

Zθi

t

Bi
t

, (71)

Zθn,i

t = exp

(
−
∫ t

0

θn,is · dWs −
1

2

∫ t

0

|θn,is |2ds
)
, (72)

Bn,i
t = exp

(∫ t

0

rn,is ds

)
, (73)

where Zθn,i

t , Bn,i
t , rn,it and θn,it are the nominal counterparts of Zθi,l

t , Bi
t, rit and θit, respectively. Here,

following equation holds:

d

(
Zθi

t

Bi
t

)
=

(
Zθi

t

Bi
t

)
(−ritdt− θit · dWt), (74)

with rit and θit given in Theorem 3. Hence:

rn,it = rit + µi
p,t − |σi

p,t|2 − θit · σi
p,t, (75)

θn,it = θit + σi
p,t, (76)

Finally, the nominal stock price Sn,i,k
t can be written by multiplying the price level and the real

stock price, and is therefore expressed as follows:275

Sn,i,k
t = pitS

i,k
t . (77)

In addition, from (D.7) and (71), Sn,i,k
t is as follows:

Sn,i,k
t = pit

Bi
t

Zθi

t

Et

[∫ T

t

δi,ks

Zθi

s

Bi
s

ds

]
(78)

=
Bn,i

t

Zθn,i

t

Et

[∫ T

t

(
pisδ

i,k
s

) Zθn,i

s

Bn,i
s

ds

]
. (79)

That is, the nominal stock price equals the present value of the nominal dividend (output) stream.
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3. Empirical Study

This section demonstrates that the model introduced in Section 2 can be calibrated to actual

economic variables in the two-currency setting of Japan and the U.S. In particular, after specifying280

the two-currency model, a special case of the multi-currency model presented in Section 2, in Section

3.1, we describe the state-space model used to estimate transitions in the latent economic factors and

subjective beliefs of the two countries in Section 3.2. Moreover, in Section 3.3, we show that the

transitions of the estimated state variables are consistent with changes in market environments and

are well explained by key economic events that occurred during the period, which may be useful for285

making investment decisions in international asset management practices. Also, in the calibration,

nominal data are deflated by the price indices and we examine the real-terms version of our model.

3.1. Two-Currency Model

This subsection describes the two-currency model, which is a special case of the multi-currency

model presented in Section 2, involving two countries, each with one agent and one stock index. The290

model will serve as the basis for the state-space model introduced in the following subsection, which

is used to estimate latent economic factors and subjective beliefs. The two-currency model consists of

a domestic country (denoted by d) and a foreign country (denoted by f). Each country is assumed to

have a single agent, one stock, one money market account and its own currency. Also, this subsection

focuses on country d; the foreign case is analogous by replacing d with f .295

Exogenously given output processes for the domestic and foreign countries, δdt and δft , driven by a

factor process Yt are described by the following stochastic differential equations:

dδdt = δdt
[
µd
δ,t(Y, t)dt+ σd

δ,t(Y, t) · dWt

]
, (80)

dδft = δft

[
µf
δ,t(Y, t)dt+ σf

δ,t(Y, t) · dWt

]
, (81)

dYt = µy(Y, t)dt+ σy(Y, t) · dWt. (82)

Here, we assume that m (dimension of Brownian motion) > 3, which means that the market is incom-

plete.

The foreign exchange rates between the two countries, denoted by qt (domestic/foreign) and 1/qt300

(foreign/domestic), evolve according to the following SDEs:

dqt = qt [µ
q
tdt+ σq

t dWt] = qt

[
(rdt − rft )dt+ σq

t (dWt + θdt dt)
]
, (83)

d(1/qt) = (1/qt)
[
(−µq

t + |σq
t |2)dt− σq

t dWt

]
= (1/qt)

[
(rft − rdt )dt− σq

t (dW + θft dt)
]
. (84)

The rit (i = d, f) represents the risk-free interest rate in country i.

We assume an agent in country d invests in three risky assets (Sd
t , qtS

f
t , qtB

f
t ) and a domestic
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money market account (Bd
t ), which follow these SDEs:

dSd
t =

(
rdt St − δdt

)
dt+ Sd

t σ
d
S,t(dWt + θdt dt); Sd

T = 0, (85)

d(qtS
f
t ) =

(
rdt qtS

f
t − qtδ

f
t

)
dt+ qtS

f
t

(
σf
S,t + σq

t

)
(dWt + θdt dt); Sf

T = 0, (86)

dBd
t = rdtB

d
t dt, (87)

d(qtB
f
t ) = rdt qtB

f
t dt+ qtB

f
t σ

q
t (dWt + θdt dt). (88)

Also, as seen in Section 2.2, the agent’s optimization problem involving only consumption is as305

follows:

max
cd,dt ,cd,ft

E

[∫ T

0

ud
t (c

d,d
t , cd,ft )dt

]
s.t. E

[∫ T

0

Hd
t (c

d,d
t + qtc

d,f
t )dt

]
≤ xd

0, ∀Hd
t , (89)

where Hd
t is the state price density process for currency d and the utility function ud

t (c
d,d
t , cd,ft ) is given

by:

ud
t (c

d,d
t , cd,ft ) = ηdt α

d
t

[
γd log cd,dt + (1− γd) log cd,ft

]
; γd ∈ [0, 1], (90)

αd
t = e−βdt, (91)

ηdt = exp

(∫ t

0

λd
s · dWs −

1

2

∫ t

0

|λd
s |2ds

)
; λd

s = λd(Ys, s). (92)

Here ηdt is the subjective belief, βd is the time preference, γd is the preference of the goods between

domestic and foreign countries, λd(Ys, s) is the subjective belief process.310

Then, we obtain the following equilibrium variables needed for the empirical analysis.

rdt = (µd
δ,t − |σd

δ,t|2) +
∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

βj
t + σd

δ,t ·
∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

λ̂j,t, (93)

θdt = σd
δ,t −

∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

λ̂j,t, (94)

Sd
t = δdt

(1−e−βd(T−t))
βd Kd,d

t Zd
t + (1−e−βf (T−t))

βf Kd,f
t Zf

t

Kd,d
t Zd

t +Kd,f
t Zf

t

. (95)

where qdj = 1 (qdj = q0) when j = d (j = f) , and Kd,d
t and Kd,f

t are defined as follows:

Kd,d
t =

xd
0γ

dβde−βdt

(1− e−βdT )
, (96)

Kd,f
t =

q0x
f
0 (1− γf )βfe−βf t

(1− e−βfT )
. (97)

Since these derivations are analogous to those in Section 2, we do not repeat them; see Section

Appendix G for details.
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3.2. State-Space Model for Particle Filtering315

This subsection presents a state-space model for particle filtering, used to estimate latent economic

factors and home biases, based on the two-currency model in Section 3.1, applied to the specific case

of Japan (domestic, d) and the U.S. (foreign, f).

First, we present the following state equations:

Yl,t+1 = Yl,t − µy,lYl,t∆t+ σy,lYl,t∆Wl,t; Yl,0 = 0, l = 1, . . . , 4, (98)

δit+1 = δit + δit

[
µi
δ

(
4∑

l=1

ailYl,t

)
∆t+ σi

δ ·∆Wt

]
, i = d, f (99)

λ̂d
t+1 = ad(Y1,t, Y2,t, Y3,t, Y4,t)σ

d
δ + bd(Y1,t, Y2,t, Y3,t, Y4,t)σ

f
δ , (100)

λ̂f
t+1 = af (Y1,t, Y2,t, Y3,t, Y4,t)σ

d
δ + bf (Y1,t, Y2,t, Y3,t, Y4,t)σ

f
δ , (101)

Zi
t+1 = Zi

t + Zi
t λ̂

i
t ·∆Wt; Zi

0 = 1, i = d, f (102)

where σd
δ = σ1

(
ρd, ρ̄d, ρ̂d,

√
1− (ρd)2 − (ρ̄d)2 − (ρ̂d)2

)⊤
, σf

δ = σ2
(
ρf , ρ̄f , ρ̂f ,

√
1− (ρf )2 − (ρ̄f )2 − (ρ̂f )2

)⊤
,320

ad(Y1,t, Y2,t, Y3,t, Y4,t) = max {Y1,t+1, 0} − min {Y2,t+1, 0} + max {Y3,t+1, 0}, bd(Y1,t, Y2,t, Y3,t, Y4,t) =

min {Y1,t+1, 0}+min {Y2,t+1, 0}+min {Y4,t+1, 0}, af (Y1,t, Y2,t, Y3,t, Y4,t) = min {Y1,t+1, 0}−max {Y2,t+1, 0}+

min {Y3,t+1, 0}, bf (Y1,t, Y2,t, Y3,t, Y4,t) = max {Y1,t+1, 0}+max {Y2,t+1, 0}+max {Y4,t+1, 0} and δd0 and

δf0 are chosen to satisfy the following equations:

δd0 =

[
xd
0

βdγd

(1− e−βdT )
+ xf

0

βf (1− γf )q0

(1− e−βfT )

]
Bd

0 , (103)

δf0 =

[
xd
0

βd(1− γd)

(1− e−βdT )q0
+ xf

0

βfγf

(1− e−βfT )

]
Bf

0 . (104)

For more detailed information about the necessity of these initial conditions for δd0 and δf0 , see the325

proof of Corollary 2 in Appendix G.

Since the calibration is conducted at a monthly frequency, we set ∆t = 1/12 and ∆Wi,t ∼ N(0,∆t)

for i = 1, ..., 4, assumed to be independent. Although λi
t (i = d, f) can be introduced as a state

variable, the equilibrium is characterized by its projection λ̂i
t (i = d, f), thus we adopt λ̂i

t as the state

variable. Also, as discussed toward the end of Section 2.4, λ̂d
t and λ̂f

t can be represented as linear330

combinations of σd
δ and σf

δ for the following reasons.

• Since λ̂d
t and λ̂f

t are the projections onto the space spanned by σd
S , σ

f
S , and σq, they can be

written as linear combinations of those three vectors.

• Conversely, since σd
S , σ

f
S , and σq themselves can be expressed as linear combinations of σd

δ , σ
f
δ ,

λ̂d
t , and λ̂f

t . For the explicit forms, see equations (G.63), (G.64), (G.46) in Appendix G.335

Thus, λ̂d
t and λ̂f

t can be represented as linear combinations of σd
δ and σf

δ unless exceptional conditions

arise.

We assume the following latent economic factors: Y1, Y2, Y3, Y4.
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Factor Interpretation

Y1,t Macroeconomic factor influencing both Japan and U.S.; proxy for global business-cycle conditions.

Y2,t Common commodity price factor; detrimental to resource-poor Japan, beneficial to resource-rich U.S.

Y3,t Country-specific factor for Japan.

Y4,t Country-specific factor for the U.S.

Table 1: Interpretation of latent factors in the model

Each Yi,t is modeled as a Vasicek-type stochastic differential equation that mean-reverts to zero.

Also, δdt , which represents the domestic output, is influenced by the factors Y1,t, Y2,t, Y3,t, and340

Y4,t. The drift terms are specified to be influenced by all of Y1,t, Y2,t, Y3,t, and Y4,t. In subsequent

parameter estimation, if any of these factors are irrelevant, their corresponding coefficients are expected

to become zero. The volatility terms are also modeled to be influenced by all elements of ∆Wt =

(∆W1,t,∆W2,t,∆W3,t,∆W4,t)
⊤. The same modeling approach is applied to δft .

The state variables λ̂d
t and λ̂f

t are specified as linear combinations of σd
δ and σf

δ , and are interpreted345

as representing the home-country bias in each agent’s subjective view. Home-country bias refers to

the empirical tendency for agents to be more optimistic about their own country and less optimistic

about foreign countries. For example, under the domestic agent’s subjective measure ηdt , the drifts of

δdt and δft are shifted to µd
δ +σd

δ · λ̂d
t and µf

δ +σf
δ · λ̂d

t , respectively. To capture home-country bias, it is

expected that σd
δ · λ̂d

t is positive (reflecting optimism toward domestic output), while σf
δ · λ̂d

t is negative350

(reflecting pessimism toward foreign output). Therefore, by specifying the functional form so that the

coefficient of σd
δ is positive and that of σf

δ is negative as in (100), and by appropriately setting the

parameters described later, the model tends to capture the home-country bias.
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Next, we introduce the following observation equations:

Sd
t =

1−exp (−βd(T−t))
βd Kd,d

t Zd
t +

1−exp (−βf (T−t))
βf Kd,f

t Zf
t

Kd,d
t Zd

t +Kd,f
t Zf

t

δdt + ϵ1,t, (105)

Sf
t =

1−exp (−βd(T−t))
βd Kf,d

t Zd
t +

1−exp (−βf (T−t))
βf Kf,f

t Zf
t

Kf,d
t Zd

t +Kf,f
t Zf

t

δft + ϵ2,t, (106)

rdt = µd
δ − |σd

δ |2

+
∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

βj
t + σd

δ ·
∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

λ̂j,t + ϵ3,t, (107)

rft = µf
δ − |σf

δ |
2

+
∑
j=d,f

(
αj

tγ
f
j q

f
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
f
j q

f
j

yj

)
Zj
t

βj
t + σf

δ ·
∑
j=d,f

(
αj

tγ
f
j q

f
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
f
j q

f
j

yj

)
Zj
t

λ̂j,t + ϵ4,t, (108)

qt+1 = qt + qt{(rdt − rft )dt+ (θdt − θft ) · (dWt + θdt dt)}+ ϵ5,t, (109)

where ϵ1,t, ϵ2,t, ϵ3,t, ϵ4,t, and ϵ5,t are independent Gaussian noise terms with mean zero and variances355

σ2
S,1, σ

2
S,2, σ

2
r,1, σ

2
r,2, σ

2
q , respectively, and Kd,d

t , Kd,f
t , Kf,d

t , Kf,f
t , θdt , and θft are calculated as in Section

3.1.

In this study, we calibrate the model in real-term settings. Then, Sd
t is proxied by the inflation-

adjusted TOPIX1 futures price series, while Sf
t is proxied by the inflation-adjusted S&P 500 futures

price series. Also, following Fisher equation2, rdt and rft are defined as the nominal short-term interest360

rates of Japan and the U.S., respectively, minus the corresponding inflation rates, while qt denotes the

price-deflated USD/JPY exchange rate. In summary, the variables are defined as follows.

• Sd
t = TOPIXt

CPId
t

: TOPIX futures prices/Japan price index

• Sf
t = S&P500t

CPIf
t

: S&P 500 futures prices/U.S. price index

• rdt = JP short rate−∆CPIdt : Japan nominal short rate - monthly inflation rate365

• rft = US short rate−∆CPIft : U.S. nominal short rates - monthly inflation rate

• qt = USDJPYt ∗ CPIf
t

CPId
t
: USD/JPY exchange rates * U.S. price index/Japan price index

1The Tokyo Stock Price Index, commonly known as TOPIX, is one of the most widely used stock market indices in

Japan. It is a broad-based, capitalization-weighted benchmark that tracks all listed companies on the Prime Market of

the Tokyo Stock Exchange.
2The Fisher equation states that the nominal interest rate is approximately equal to the real interest rate plus the

expected inflation rate.
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Here, the stock-price, interest-rate, and exchange-rate data are retrieved from Bloomberg, with

tickers TP1 Index (TOPIX futures), SP1 Index (S&P 500 futures), MUTSCALM Index (Japan nom-

inal short rate), FEDL01 and SOFRRATE Index3 (U.S. nominal short rate), and USDJPY Curncy,370

respectively. Regarding price index data, we obtain the Japanese series from the Statistics Bureau of

Japan4 and the U.S. series from the Federal Reserve Bank of St. Louis5.

The data spans from January 2000 to December 2021. Also, to remove the effect of scale hetero-

geneity across the series in the particle-filter estimation, the raw data were rescaled so that, over the

entire sample period, each series has a mean of 1 and a standard deviation of 1. All estimations were375

then performed on these standardized series.

The model thus contains the following approximately 40 parameters: µy,1, σy,1, µy,2, σy,2, µy,3,

σy,3, µy,4, σy,4, µd
δ , µ

f
δ , σ1, ρd, ρ̄d, ρ̂d, σ2, ρf , ρ̄f , ρ̂f , σd

δ , σ
f
δ , a1, a2, a3, a4, b1, b2, b3, b4, σ2

S,1, σ2
S,2,

σ2
r,1, σ2

r,2, σ2
q , βd, βf , xd

0, x
f
0 , γd,d, γd,f , γf,d, and γf,f . Given the high dimensionality of the parameter

space, a full grid search or exhaustive optimization is computationally infeasible. Therefore, several380

parameters are fixed exogenously based on empirical considerations.

First, we set σ1 = σ2 = 0.2, reflecting the fact that the process δ is intended to capture equity

market dynamics, which typically exhibit annualized volatility around 20%. Second, for the volatility

loading vectors, we set ρd = 0.6, ρ̄d = −0.6, and ρ̂d = 0.5, resulting in σd
δ = 0.2(0.6,−0.6, 0.5, 0)⊤, so

that the weights on the common factors Y1, Y2, and the domestic-specific factor Y3 are approximately385

balanced. Similarly, we set ρf = 0.6, ρ̄f = 0.6, and ρ̂f = 0, yielding σf
δ = 0.2(0.6, 0.6, 0, 0.5)⊤.

Third, we set the time preference parameters to βd = 0.05 and βf = 0.1, consistent with the

empirical observation that Japanese investors tend to have longer investment horizons, while U.S.

investors are generally more short-term oriented. Fourth, we set the preference parameters as γd,d =

0.7, γd,f = 0.3, γf,d = 0.5, and γf,f = 0.5, indicating that the domestic agent (interpreted as a Japanese390

investor) exhibits a stronger preference for domestic goods relative to foreign goods. Additionally, we

set xd
0 = xf

0 = 100, and the observation noise variances as σ2
S,1 = σ2

S,2 = 0.01, σ2
r,1 = σ2

r,2 = 0.02, and

σ2
q = 0.01.

Based on the above settings, we perform a grid search over the remaining parameters based on

the loglikelihood loss function. Using the parameter set that maximizes the likelihood, we further395

adjust several parameters manually to enhance interpretability, while ensuring that the likelihood is

not significantly compromised. The final parameter values are chosen to balance empirical fit and

economic plausibility: µy,1 = 1, σy,1 = 0.1, µy,2 = 0.5, σy,2 = 0.1, µy,3 = 0.1, σy,3 = 0.1, µy,4 =

0.1, σy,4 = 0.5, µd
δ = 0.1, µf

δ = 0.1, ad1 = 0.5, ad2 = 1, ad3 = 0.5, ad4 = −0.5, af1 = −1, af2 = −0.5, af3 = 1,

3Since the SOFRRATE Index is available only from April 2018, we proxy the earlier period with the FRDL01 Index.
4https://www.e-stat.go.jp/stat-search/files?page=1&layout=datalist&toukei=00200573&tstat=

000001150147&cycle=1&year=20250&month=12040605&tclass1=000001150149 (in Japanese)
5https://fred.stlouisfed.org/series/CPIAUCSL
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and af4 = 0.5. The empirical results presented in Section 3.3 are based on this parameter set.400

Parameter Description Values

Drift and Volatility of Y Process

µy,1, σy,1 Drift and volatility of Y1,t (global macro factor) 1, 0.1

µy,2, σy,2 Drift and volatility of Y2,t (commodity factor) 0.5, 0.1

µy,3, σy,3 Drift and volatility of Y3,t (Japan-specific) 0.1, 0.1

µy,4, σy,4 Drift and volatility of Y4,t (U.S.-specific) 0.1, 0.5

Drift and Volatility of δ Process

µd
δ , µf

δ Components of drift for δdt and δft 0.1, 0.1

ad
1, ad

2, ad
3, ad

4 Components of drift for δdt 0.5, 1, 0.5, −0.5

af
1 , af

2 , af
3 , af

4 Components of drift for δft −1, −0.5, 1, 0.5

σd
δ Volatility vector for δdt 0.2(0.6,−0.6, 0.5, 0)⊤

σf
δ Volatility vector for δft 0.2(0.6, 0.6, 0, 0.5)⊤

Preference and Initial Condition

βd, βf Time preference parameters 0.05, 0.1

γd,d, γd,f Domestic agent’s preference for goods 0.7, 0.3

γf,d, γf,f Foreign agent’s preference for goods 0.5, 0.5

xd
0, xf

0 Initial wealth levels 100, 100

Observation Noise Variance

σ2
S,1, σ2

S,2 Noise in stock prices 0.01, 0.01

σ2
r,1, σ2

r,2 Noise in interest rates 0.02, 0.02

σ2
q Noise in exchange rate 0.01

Table 2: List of model parameters, their roles, and assigned values

3.3. Estimation Results for State-space Model

This subsection examines the estimation results of the state-space model, including the latent

economic factors and the home biases of Japan and the U.S. In particular, we demonstrate that the

transitions of the estimated factor processes and the biases are consistent and can be explained by the

changes in the economic environments of the two countries.405

First, the estimation results for the unobservable state variable Yi (i = 1, ..., 4) are shown in Figures

1.
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Figure 1: Estimated state variables Yi (i = 1, 2, 3, 4).

Regarding Y1,t, which we assume to be the global business-cycle factor, the following dynamics are

observed over the sample period:

Period Transition of Y1,t and Key Events

Early 2000s Declined due to the collapse of the global IT bubble.

2003-2007 Increased steadily, supported by BRICS expansion and the U.S. housing boom; entered positive territory.

2008 Dropped sharply due to the Lehman shock and global financial crisis.

2010-2015 Recovered gradually, driven by quantitative easing; exceeded pre-crisis levels by the mid-2010s.

2015-2016 Suppressed by the China shock, oil-price collapse, and U.S.–China trade tensions; remained moderately positive.

2020-2021 Temporarily declined during the Covid-19 pandemic; remained above zero due to global monetary easing.

Table 3: Transition of Y1,t in response to global macroeconomic events

Turning to Y2,t—interpreted as the commodity price factor—its trajectory over the sample horizon410

can be summarized as follows:

Period Transition of Y2,t and Key Events

2000-2010 Fluctuated around zero.

2012-2013 Declined significantly due to the U.S. shale gas revolution and global energy oversupply.

2014- Returned to near zero and remained relatively stable.

Table 4: Transition of Y2,t in response to global commodity market dynamics

As for Y3,t interpreted as the Japan specific factor, its evolution can be characterized as follows:
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Period Transition of Y3,t and Key Events

Early 2000s Declined due to Japan’s economic stagnation following the collapse of the IT bubble.

2003-2011 Experienced a cyclical upswing under Koizumi’s financial reforms;

remained negative due to the 2008 global financial crisis and the 2011 Tōhoku earthquake.

2013- Rebounded under Abenomics;

aggressive monetary easing and yen depreciation enhanced corporate earnings and Y3,t recoverd to near zero.

Table 5: Transition of Y3,t in response to Japan-specific economic events

Regarding Y4,t, which we assume to be the U.S. specific factor, the following dynamics are observed

over the sample period:

Period Transition of Y4,t and Key Events

Early 2000s Declined following the collapse of the IT bubble.

2003-2007 Increased due to the housing boom and strong consumer spending; entered positive territory.

2008 Dropped sharply during the Lehman shock.

2009-2015 Expanded significantly with the Federal Reserve’s quantitative easing,

the shale gas boom, and growth in the technology sector.

2015- Remained elevated despite the China shock, oil price decline, trade tensions, and the Covid-19 pandemic.

Table 6: Transition of Y4,t in response to U.S.-specific events

Second, the estimation results for state variables δdt and δft are shown in Figure 2.415

Figure 2: Estimated δdt and δft .

• Both δdt and δft display similar paths to the corresponding equity indices, respectively.

Since δdt and δft are the most important variables for Sd
t and Sf

t as seen in (105) and (106), it is natural

that they follow a similar path as the equity indices.
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Third, the estimated results for λ̂d
t are shown in Figure 3, where adt denotes the coefficient of σd

δ ,

(max {Y1,t+1, 0}−min {Y2,t+1, 0}+max {Y3,t+1, 0}), and bdt denotes the coefficient of σf
δ , (min {Y1,t+1, 0}+420

min {Y2,t+1, 0}+min {Y4,t+1, 0}). As discussed in Subsection 3.2, λ̂d
t is specified as a linear combination

of the volatility vectors: λ̂d
t = adtσ

d
δ + bdtσ

f
δ . In this formulation, the degree of positive (negative) bias

toward domestic (foreign) output is captured by the inner product σd
δ ·λ̂d

t = adt |σd
δ |2
(
σf
δ · λ̂d

t = bdt |σ
f
δ |2
)
,

where the cross term vanishes due to σd
δ ·σ

f
δ = 0. Thus, the coefficients adt and bdt quantify the strength

of the positive home bias and the negative foreign bias, respectively.425

Figure 3: Estimated adt and bdt .

The following biases are estimated in Japan.

Period Transition of Home Bias in Japan

Early 2000s No positive bias observed before/after the IT bubble collapse.

2003-2007 Gradual increase in positive home bias under Koizumi’s financial reforms.

2008 Positive bias erased by Lehman shock; negative bias toward U.S. intensified.

2013-2015 Abenomics improved domestic conditions; positive bias rose again.

2016-2019 Positive bias peaked and then retreated due to limited impact of fiscal and structural reforms.

2020- Covid-19 and yen depreciation boosted corporate earnings; positive bias increased again.

Table 7: Transition of Japan’s estimated home bias parameter

Similarly, the estimated results for λ̂f
t are shown in Figure 4, where aft denotes the coefficient of σd

δ ,

(min {Y1,t+1, 0}−max {Y2,t+1, 0}+min {Y3,t+1, 0}), and bft denotes the coefficient of σf
δ , (max {Y1,t+1, 0}+

max {Y2,t+1, 0}+max {Y4,t+1, 0}). Thus, the coefficients aft and bft quantify the strength of the negative

foreign bias and the positive home bias from the view of the foreign country, respectively.430
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Figure 4: Estimated aft and bft .

The following biases are estimated in the U.S.

Period Transition of Home Bias in the U.S.

Early 2000s After dot-com bubble burst, positive home bias collapsed.

2003-2007 Housing boom generated positive bias.

2008 Lehman shock eliminated positive home bias and generated negative foreign bias.

2010-2014 Positive bias recovered with Fed’s quantitative easing and subsequent recovery of the U.S. economy.

2014-2016 Further boosted by shale-gas revolution and tech sector growth (GAFAM).

2015-2016 Temporary correction from China shock, oil price crash, and U.S.-China trade tensions.

2020- Despite the Covid-19 shock, extensive fiscal and monetary stimulus enabled the economy

to survive the downturn and this also prevented the positive bias from dropping.

Table 8: Transition of U.S. estimated home bias parameter

Finally, we examine the filtering results for observation variables Sd
t , S

f
t , rdt , r

f
t , and qt in Figures

5, 6, 7, 8, and 9, respectively. Since the initial values of the raw data and filtered values are not

necessarily at the same level due to estimation settings, we plot the data after 2002 to avoid confusion.
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Figure 5: Raw data and its filtered value for TOPIX futures price Sd
t .

Figure 6: Raw data and its filtered value for S&P 500 futures price Sf
t .

Figure 7: Raw data and its filtered value for Japan short rate rdt .
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Figure 8: Raw data and its filtered value for U.S. short rate rft .

Figure 9: Raw data and its filtered value for exchange rate qt.

• All filtered values shown in Figures 5, 6, 7, 8, and 9 closely track or at least follow the trend of435

the raw data.

4. Conclusion

As financial markets have become increasingly globalized, multi-asset investment funds have as-

sumed a more prominent role. However, the effective operation of such multi-asset funds remains

challenging. Even if a fund manager has an outlook on macroeconomic conditions, mapping these440

views into implications for each country’s expected interest rates, exchange rates, and equity prices is

difficult. These variables cannot be assigned arbitrarily but must be specified in a manner consistent

with economic theory. Unfortunately, the existing literature does not provide an established multi-

currency asset allocation framework that is sufficiently flexible to incorporate such practical needs.

As a result, multi-asset fund managers sometimes abandon rational asset allocation and resort to ad445
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hoc methods (e.g., a naïve 25%-25%-25%-25% allocation across domestic equities, foreign equities,

domestic bonds, and foreign bonds).

To address this issue, this paper develops a novel multi-currency incomplete market equilibrium

model with agents who have logarithmic utility and heterogeneous time preferences and subjective

beliefs, within a market equilibrium framework based on supply and demand. Despite relying on450

only a few exogenous inputs (e.g., each country’s output process and agents’ preference parameters),

the model endogenously generates equilibrium interest rates, exchange rates, stock prices, and opti-

mal consumption and portfolios. From a practical perspective, the model offers (i) the flexibility to

capture cross-country differences in investors’ time preferences and macroeconomic outlooks, and (ii)

the tractability to examine how these differences affect equilibrium interest rates and asset prices,455

including stock prices and exchange rates. This enables practitioners to evaluate how investors’ time

preferences and macroeconomic views affect equilibrium asset prices in a manner consistent with the

equilibrium framework.

As an application of the proposed model, we calibrate it to actual market data, specifically equity

indices, short-term interest rates, and exchange rates for Japan and the United States, using state-460

space modeling and particle filtering techniques. The calibration is performed under the assumption

of home-country bias, reflecting the empirical tendency of investors to be more optimistic about their

domestic markets and more pessimistic about foreign markets. The estimated results not only replicate

the observed dynamics of equity indices, short-term interest rates, and exchange rates, but also capture

transitions in time-varying home-country biases and latent economic factors, which may be useful for465

practical investment decision-making. Future research may explore applications in risk management,

portfolio optimization, and the development of investment strategies that achieve high risk-adjusted

returns.
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Appendix A. Proof of Proposition 1

Proof. First, we consider the following supremum problem:

sup
ci,l,jt

ηi,lt αi,l
t

 N∑
j=1

γi,l,j log ci,l,jt

− yi,lHi,l
t

 N∑
j=1

qi,jt ci,l,jt

, (A.1)

and obtain the first-order condition:525

ci,l,j,∗t =
γi,l,jηi,lt αi,l

t

yi,lHi,l
t qi,jt

. (A.2)

Second, setting

Ũ(yi,lHi,l
t , t) = ηi,lt αi,l

t

 N∑
j=1

γi,l,j log ci,l,j,∗t

− yi,lHi,l
t

 N∑
j=1

qi,jt ci,l,j,∗t

 , (A.3)

we address the following infimum problem:

inf
νi,l
t ,σi

tν
i,l
t =0

E

[∫ T

0

Ũ(yi,lHi,l
t , t)dt

]
. (A.4)

Here, the expectation term can be rewritten as:

E

[∫ T

0

Ũ(yi,lHi,l
t , t)dt

]
(A.5)

= E

∫ T

0

ηi,lt αi,l
t

 N∑
j=1

γi,l,j log ci,l,j,∗t

 dt

− yi,lE

∫ T

0

Hi,l
t

 N∑
j=1

qi,jt ci,l,j,∗t

 dt

 (A.6)

= E

∫ T

0

ηi,lt αi,l
t


N∑
j=1

γi,l,j(log γi,l,j + log ηi,lt + logαi,l
t − log yi,l − logHi,l

t − log qi,jt )

 dt


−E

∫ T

0

 N∑
j=1

γi,l,jηi,lt αi,l
t

 dt

 . (A.7)

Thus, to solve the infimum problem on νi,lt , we only need to consider the following problem:

inf
νi,l
t ,σi

tν
i,l
t =0

E

[∫ T

0

−ηi,lt αi,l
t logHi,l

t dt

]
. (A.8)

In addition, the objective for the infimum can be rewritten as:530

E

[∫ T

0

−ηi,lt αi,l
t logHi,l

t dt

]
(A.9)

= E

[∫ T

0

ηi,lt αi,l
t

(∫ t

0

risds+
1

2

∫ t

0

|θis + νi,ls |2ds+
∫ t

0

(θis + νi,ls ) · dWs

)
dt

]
(A.10)

= Ei,l

[∫ T

0

αi,l
t

(∫ t

0

risds+
1

2

∫ t

0

|θis + νi,ls |2ds+
∫ t

0

(θis + νi,ls ) · (λi,l
s ds+ dW i,l

s )

)
dt

]
, (A.11)
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where Ei,l denotes the expectation under the subjective belief of agent l in country i. Since νi,ls ⊥ θis,

we can consider the term relating to νi,ls :

inf
νi,l
t ,σi

tν
i,l
t =0

Ei,l

[∫ T

0

(
1

2
|νi,ls |2 + νi,ls · λi,l

s

)
dt

]
. (A.12)

The infimum is attained at

νi,lt = −λ̂i,l,⊥
t . (A.13)

This means that ηi,lt /Hi,l
t = (Bi

t/Z
θi

t )Zi,l
t . Here, Zθi

t represents the common part of the risk neutral

measures, and Zi,l
t is the specific part related to each agent.535

Also, we rewrite the consumption process ci,l,j,∗t by substituting ηi,lt /Hi,l
t as follows:

ci,l,j,∗t =
γi,l,jηi,lt αi,l

t

yi,lHi,l
t qi,jt

=
γi,l,jαi,l

t Bi
tZ

i,l
t

yi,lZθi

t qi,jt

. (A.14)

Third, since the constraint must be satisfied, we have:

yi,l =
1− e−βi,lT

βi,lxi,l
0

. (A.15)

Appendix B. Proof of Theorem 1

Proof. We show this by a convex duality technique. Noting that for yi(i = 1, ..., N) > 0, u(x1, ..., xN )540

twice continuously differentiable and ũ(y1, ..., yN ) = supx1,...,xN
(u(x1, ..., xN )−

∑N
j=1 xjyj),

ũ(y1, ..., yN ) = sup
x1,...,xN

u(x1, ..., xN )−
N∑
j=1

xjyj

 ≥ u(x1, ..., xN )−
N∑
j=1

xjyj , (B.1)

ũ(u′
1, ..., u

′
N ) = u(x1, ..., xN )−

N∑
j=1

xju
′
j , (B.2)

where u′
j is the derivative of u(x1, ..., xN ) with respect to xj , respectively.

Here, we set:

u(x1, ..., xN ) = αi,l
t ηi,lt

N∑
j=1

γi,l,j log xj , (B.3)

u′
j(xj) =

γi,l,jαi,l
t ηi,lt

xj
. (B.4)

For any ci,l,jt satisfying the constraint with yj = yi,lHi,l
t qi,jt , we have:

u(ci,l,1t , ..., ci,l,Nt ) = αi,l
t ηi,lt

N∑
j=1

γi,l,j log ci,l,jt (B.5)

≤ ũ(y1, ..., yN ) +

N∑
j=1

ci,l,jt yj = ũ(yi,lHi,l
t qi,1t , ..., yi,lHi,l

t qi,Nt ) +

N∑
j=1

ci,l,jyi,lHi,l
t qi,jt , (B.6)
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and, for ci,l,j,∗, we have:545

ũ(u′
1(c

i,l,1,∗), ..., u′
N (ci,l,N,∗)) = u(ci,l,1,∗, ..., ci,l,N,∗)−

N∑
j=1

ci,l,j,∗u′
j(c

i,l,j,∗) (B.7)

= αi,l
t ηi,lt

N∑
j=1

γi,l,j log ci,l,j,∗ −
N∑
j=1

ci,l,j,∗yi,lHi,l
t qi,jt . (B.8)

By budget constraint, we have:

E

∫ T

0

 N∑
j=1

qi,jt ci,l,jt

 yi,lHi,l
t dt

 ≤ E

∫ T

0

 N∑
j=1

qi,jt ci,l,j,∗t

 yi,lHi,l
t dt

 . (B.9)

Therefore, using (B.6), (B.8), and (B.9), we have:

E

∫ T

0

ηi,lt αi,l
t

 N∑
j=1

γi,l,j log ci,l,jt

 dt

 = E

[∫ T

0

u(ci,l,1t , ..., ci,l,Nt )dt

]
(B.10)

≤ E

[∫ T

0

ũ(yi,lHi,l
t qi,1t , ..., yi,lHi,l

t qi,Nt )dt

]
+E

∫ T

0

N∑
j=1

ci,l,jqi,jt yi,lHi,l
t dt

 (B.11)

≤ E

[∫ T

0

ũ(yi,lHi,l
t qi,1t , ..., yi,lHi,l

t qi,Nt )dt

]
+E

∫ T

0

N∑
j=1

ci,l,j,∗qi,jt yi,lHi,l
t dt

 (B.12)

= E

∫ T

0

ũ(u′
1(c

i,l,1,∗
t ), ..., u′

1(c
i,l,N,∗
t )) +

N∑
j=1

ci,l,j,∗u′
j(c

i,l,j,∗
t )

 dt

 (B.13)

= E

[∫ T

0

u(ci,l,1,∗t , ..., ci,l,N,∗
t )dt

]
. (B.14)

This means that the solution ci,l,j,∗t for the dual problem (33) is also a solution for the primal problem

(32).

Appendix C. Proof of Theorem 2550

Proof. If we find the wealth process Xi,l,∗
t with an investment strategy (πi,l,∗

t , πi,l,N+i,∗
t ) such that

Xi,l,∗
t Hi,l

t +
∫ t

0
Hi,l

t

(∑N
j=1 q

i,j
s ci,l,j,∗s

)
ds is a martingale and Xi,l,∗

T = 0, then ci,l,j,∗t is in the admissible

set Ai,l. We can find such wealth process based on the following equation:

Xi,l,∗
t Hi,l

t +

∫ t

0

Hi,l
s

 N∑
j=1

qi,js ci,l,j,∗s

 ds = Et

Xi,l,∗
T Hi,l

t +

∫ T

0

Hi,l
s

 N∑
j=1

qi,js ci,l,j,∗s

 ds

 .(C.1)
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Then, we can express the wealth process Xi,l,∗
t as follows:

Xi,l,∗
t =

1

Hi,l
t

Et

∫ T

0

Hi,l
s

 N∑
j=1

qi,js ci,l,j,∗s

 ds

−
∫ t

0

Hi,l
s

 N∑
j=1

qi,js ci,l,j,∗s

 ds

 (C.2)

=
1

Hi,l
t

Et

∫ T

t

Hi,l
s

 N∑
j=1

qi,js ci,l,j,∗s

 ds

 (C.3)

=
1

yi,lHi,l
t

Et

[∫ T

t

ηi,ls αi,l
s ds

]
(C.4)

=
ηi,lt

yi,lHi,l
t

∫ T

t

αi,l
s ds (C.5)

=
e−βi,lt − e−βi,lT

1− e−βi,lT

(
xi,l
0 Bi

tZ
i,l
t

Zθi

t

)
. (C.6)

Applying Ito’s formula, we have:555

dXi,l,∗
t = d

[
e−βi,lt − e−βi,lT

1− e−βi,lT

(
xi,l
0 Bi

tZ
i,l
t

Zθi

t

)]
(C.7)

= ritX
i,l,∗
t dt+Xi,l,∗

t

(
θit + λ̂i,l

t

)
·
(
dWt + θitdt

)
−

 N∑
j=1

qi,jt ci,l,j,∗t

 dt. (C.8)

Thus, we find that an investment strategy (πi,l,∗
t , πi,l,N+i,∗

t ) achieving the following equation satisfies

(C.8):

πi,l,∗⊤
t σi

t = Xi,l,∗
t (θit + λ̂i,l

t )⊤, (C.9)

πi,l,N+i,∗
t = Xi,l,∗

t − πi,l,∗
t · 1. (C.10)

If (σi
tσ

i⊤
t )−1 exists, πi,l,∗

t = Xi,l,∗
t (σi

tσ
i⊤
t )−1σi

t(θ
i
t +

ˆ
λi,l
t ).

Appendix D. Proof of Theorem 4

Proof. Since Si
tZ

θi

t /Bi
t+
∫ t

0
δisZ

θi

s /Bi
sds is a martingale and Si

T = 0, we obtain the following equation:560

Si
t

Zθi

t

Bi
t

+

∫ t

0

δis
Zθi

s

Bi
s

ds = Et

[
Si
T

Zθi

T

Bi
T

+

∫ T

0

δis
Zθi

s

Bi
s

ds

]
. (D.1)

By rearranging the above equation, we can express the stock price Si
t as follows:

Si
t =

Bi
t

Zθi

t

Et

[∫ T

t

δis
Zθi

s

Bi
s

ds

]
. (D.2)
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This equation implies that the stock price is the present value of the future dividend stream. Here,

substituting (50) into the above equation, we have:

Si
t =

δit∑N
j=1

∑Lj

l=1
γj,l,iαj,l

t Zj,l
t

yj,lqj,i0

Et

∫ T

t

N∑
j=1

Lj∑
l=1

γj,l,iαj,l
s Zj,l

s

yj,lqj,i0

ds

 (D.3)

=
δit∑N

j=1

∑Lj

l=1
γj,l,iαj,l

t Zj,l
t

yj,lqj,i0

∫ T

t

N∑
j=1

Lj∑
l=1

γj,l,iαj,l
s Zj,l

t

yj,lqj,i0

ds (D.4)

=
δit∑N

j=1

∑Lj

l=1
γj,l,iαj,l

t Zj,l
t

yj,lqj,i0

 N∑
j=1

Lj∑
l=1

γj,l,iZj,l
t

yj,lqj,i0

e−βj,lt − e−βj,lT

βj,l

 (D.5)

=
δit∑N

j=1

∑Lj

l=1
γj,l,ie−βj,ltZj,l

t xj,l
0 βj,l

qj,i0 (1−e−βj,lT )

N∑
j=1

Lj∑
l=1

γj,l,iZj,l
t (e−βj,lt − e−βj,lT )xj,l

0

qj,i0 (1− e−βj,lT )
. (D.6)

As for the individual stock price Si,k
t , replacing δit with δi,kt in the above discussion, we have:

Si,k
t =

Bi
t

Zθi

t

Et

[∫ T

t

δi,ks

Zθi

s

Bi
s

ds

]
(D.7)

=
δit∑N

j=1

∑Lj

l=1
γj,l,iαj,l

t Zj,l
t

yj,lqj,i0

Et

∫ T

t

δi,ks

δis

N∑
j=1

Lj∑
l=1

γj,l,iαj,l
s Zj,l

s

yj,lqj,i0

ds

 . (D.8)
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Appendix E. Proof of Proposition 2

Proof. Before confirming the market clearing conditions, we check that the following relationship

holds:

N∑
i=1

Lj∑
l=1

q1,it Xi,l
t =

N∑
i=1

Ki∑
k=1

q1,it Si,k
t . (E.1)

From (12) and (C.8), we obtain the following expression for the wealth process:

d(q1,it Xi,l
t ) = q1,it Xi,l

t

[{
r1t + θ1t · (θ1t + λ̂i,l)

}
dt+ (θ1t + λ̂i,l

t ) · dWt

]
−

 N∑
j=1

q1,jt ci,l,j,∗t

 dt(E.2)

= q1,it Xi,l
t

[
r1t dt+ (θ1t + λ̂i,l

t ) · dW 1,∗
t

]
−

 N∑
j=1

q1,jt ci,l,j,∗t

 dt, (E.3)

where dW 1,∗
t is the Brownian motion under the risk-neutral measure associated with the first country:570
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dW 1,∗
t = dWt + θ1t . Summing up the above equation, we have:

d

 N∑
i=1

Li∑
l=1

q1,it Xi,l
t

 = r1t

N∑
i=1

Li∑
l=1

q1,it Xi,l
t dt+

N∑
i=1

Li∑
l=1

q1,it Xi,l
t

(
θ1t + λ̂i,l

t

)
· dW 1,∗

t

−
N∑
i=1

Li∑
l=1

 N∑
j=1

q1,jt ci,l,j,∗t

 dt (E.4)

= r1t

N∑
i=1

Li∑
l=1

q1,it Xi,l
t dt−

N∑
j=1

q1,jδjt dt+

N∑
i=1

Li∑
l=1

q1,it Xi,l
t

(
θ1t + λ̂i,l

t

)
· dW 1,∗

t . (E.5)

Then, we have:

N∑
i=1

Li∑
l=1

q1,it Xi,l
t = E1

∫ T

t

B1
t

B1
s

 N∑
j=1

q1,jδjt

 ds

 =

N∑
i=1

q1,it Si
t =

N∑
i=1

Ki∑
k=1

q1,it Si,k
t , (E.6)

where E1 is the expectation under the risk-neutral measure associated with the first country. Thus,

we obtain (E.1).

Then, we examine the market clearing conditions (57) and (58). According to equation (3.3) on575

page 11 of Karatzas & Shreve (1998), the Γ-financed (consumption-financed) strategy (πi,l,∗
t , πi,l,N+i,∗

t )

ensures that Xi,l satisfies the following equation:

d

 N∑
i=1

Li∑
l=1

q1,it Xi,l
t

 = r1t

 N∑
i=1

Li∑
l=1

q1,iXi,l

 dt−
N∑
j=1

q1,jt δjt dt

+

N∑
j=1

N∑
i=1

Kj∑
k=1

Li∑
l=1

q1,it π
i,l,(j,k),∗
t (σj,k

S,t + σ1,j
q,t )dW

1,∗
t +

2N∑
j=N+1

N∑
i=1

Li∑
l=1

q1,it πi,l,j,∗
t σ1,j

q,t dW
1,∗
t , (E.7)

where σ1,j
q,t = σ1,j−N

q,t when j > N , and σ1,1
q,t = σ1,N+1

q,t = 0. This equation means that the dynamics of

wealth process dXi,l
t is driven by three components: (i) the risk-free rate part, (ii) the consumption

part, and (iii) the investment on risky asset part.580

On the other hand, Si
t satisfies the following equation:

d

(
N∑
i=1

q1,it Si
t

)
= r1t

(
N∑
i=1

q1,it Si
t

)
dt−

N∑
i=1

q1,it δitdt+

N∑
j=1

Kj∑
k=1

q1,jt Sj,k
t (σj,k

S,t + σ1,j
q,t )dW

∗,1
t . (E.8)

As aggregate wealth equals aggregate stock price as in (E.1), the volatility terms in (E.7) and (E.8)

must be equal:

N∑
j=1

N∑
i=1

Kj∑
k=1

Li∑
l=1

q1,it π
i,l,(j,k),∗
t (σj,k

S,t + σ1,j
q,t ) +

2N∑
j=N+1

N∑
i=1

Li∑
l=1

q1,it πi,l,j,∗
t σ1,j

q,t

=

N∑
j=1

Kj∑
k=1

q1,jt Sj,k
t (σj,k

S,t + σ1,j
q,t ). (E.9)

Since
(
σj,k
S,t + σ1,j

q,t

)
and σ1,j

q,t are
∑N

i=1 K
i + N − 1 independent vectors, we obtain the following
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market clearing conditions:585

q1,jt Sj,k
t =

N∑
i=1

Li∑
l=1

q1,iπi,l,(j,k),∗; j = 1, ..., N ; k = 1, ...,Kj , (E.10)

0 =

N∑
i=1

Li∑
l=1

q1,iπi,l,j,∗; (j = N + 2, ..., 2N), (E.11)

which are equivalent to the market clearing conditions (57) and (58) except for the case of j = N + 1.

For j = N+1, since
∑N

j=1

∑Kj

k=1 q
1,i
t π

i,l,(j,k),∗
t +

∑2N
j=N+1 q

1,i
t πi,l,j,∗

t = q1,it Xi,l
t and

∑N
j=1

∑Lj

l=1 q
1,j
t Xj,l

t =∑N
j=1

∑Kj

k=1 q
1,j
t Sj,k

t , we have

N∑
j=1

Kj∑
k=1

N∑
i=1

Li∑
l=1

q1,it π
i,l,(j,k),∗
t +

2N∑
j=N+1

N∑
i=1

Li∑
l=1

q1,it πi,l,j,∗
t =

N∑
i=1

Li∑
l=1

q1,it Xi,l
t =

N∑
i=1

q1,it Si
t . (E.12)

Thus, we have:

N∑
j=1

Kj∑
k=1

N∑
i=1

Li∑
l=1

q1,it π
i,l,(j,k),∗
t +

N∑
i=1

Li∑
l=1

q1,it πi,l,N+1,∗
t +

2N∑
j=N+2

N∑
i=1

Li∑
l=1

q1,it πi,l,j,∗
t =

N∑
i=1

q1,it Si
t . (E.13)

By substituting the market clearing condition (57), we have:590

N∑
j=1

Kj∑
k=1

q1,jt Sj,k
t +

N∑
i=1

Li∑
l=1

q1,it πi,l,N+1,∗
t + 0 =

N∑
i=1

q1,it Si
t . (E.14)

Then we obtain:
N∑
i=1

Li∑
l=1

q1,it πi,l,N+1,∗
t = 0. (E.15)

Therefore, we can conclude that the market clearing conditions are satisfied.

Appendix F. Proof of Proposition 3

Proof. The derivative of Si,k
t Zθi

t /Bi
t is given by:

d

(
Si,k
t Zθi

t

Bi
t

)
=

(
Si,k
t Zθi

t

Bi
t

){(
µi,k
S,t − rit − σi,k

S,tθ
i
t

)
dt+

(
σi,k⊤
S,t − θit

)
· dWt

}
. (F.1)

Thus, we obtain the following relationship:595

Dt

(
Si,k
t Zθi

t

Bi
t

)
=
(
σi,k⊤
S,t − θit

)(Si,k
t Zθi

t

Bi
t

)
, (F.2)

where Dt is the Malliavin derivative operator.

On the other hand, from (50) and (56), Si,k
t can be expressed as following:

Si,k
t

Zθi

t

Bi
t

= Et

∫ T

t

δi,ks

δis

N∑
j=1

Lj∑
l=1

Ai,j,l
s Zj,l

s ds

 , (F.3)

Ai,j,l
s =

γj,l,iαj,l
s

yj,lqj,i0

. (F.4)
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By applying Dt to both sides, we have:

Dt

(
Si,k
t

Zθi

t

Bi
t

)
= Et

∫ T

t

Dt

δi,ks

δis

N∑
j=1

Lj∑
l=1

Ai,j,l
s Zj,l

s

 ds

 . (F.5)

Here, when t ≤ s, applying chain rule of Dt to exponential martingale Zj,l
s , δi,ks and δis, we have:

DtZ
j,l
s = λ̂j,l

t Zj,l
s , (F.6)

Dtδ
i,k
s = σi,k

δ,t δ
i,k
s , (F.7)

Dt

(
1

δis

)
= − 1

δis
σi
δ,t. (F.8)

Using these relationship,600

Et

∫ T

t

Dt

δi,ks

δis

N∑
j=1

Lj∑
l=1

Ai,j,l
s Zj,l

s

 ds

 (F.9)

= Et

∫ T

t

(
Dtδ

i,k
s

δis
+Dt

1

δis
· δi,ks

) N∑
j=1

Lj∑
l=1

Ai,j,l
s Zj,l

s +
δi,ks

δis

N∑
j=1

Lj∑
l=1

Ai,j,l
s DtZ

j,l
s ds

 (F.10)

= Et

∫ T

t

(
σi,k
δ,t − σi

δ,t

) δi,ks

δis

N∑
j=1

Lj∑
l=1

Ai,j,l
s Zj,l

s +
δi,ks

δis

N∑
j=1

Lj∑
l=1

Ai,j,l
s Zj,l

s λ̂j,l
t ds

 (F.11)

=

(
Si,k
t

Zθi

t

Bi
t

)σi,k
δ,t − σi

δ,t +

N∑
j=1

Lj∑
l=1

Et

[∫ T

t
δi,ks

δis
Ai,j,l

s Zj,l
s ds

]
∑N

f=1

∑Lf

g=1 Et

[∫ T

t
δi,ks

δis
Ai,f,g

s Zf,g
s ds

] λ̂j,l
t

 . (F.12)

The last equality follows from (F.3). Thus, we have:

(
σi,k⊤
S,t − θit

)
=

σi,k
δ,t − σi

δ,t +

N∑
j=1

Lj∑
l=1

Et

[∫ T

t
δi,ks

δis
Ai,j,l

s Zj,l
s ds

]
∑N

f=1

∑Lf

g=1 Et

[∫ T

t
δi,ks

δis
Ai,f,g

s Zf,g
s ds

] λ̂j,l
t

 . (F.13)

Therefore, using (47), the volatility vector σi,k
S,t is given by:

σi,k⊤
S,t = σi,k

δ,t −
N∑
j=1

Lj∑
l=1

Ai,j,l
t Zj,l

t∑N
f=1

∑Lf

g=1 A
i,f,g
t Zf,g

t

λ̂j,l
t (F.14)

+

N∑
j=1

Lj∑
l=1

Et

[∫ T

t
δi,ks

δis
Ai,j,l

s Zj,l
s ds

]
∑N

f=1

∑Lf

g=1 Et

[∫ T

t
δi,ks

δis
Ai,f,g

s Zf,g
s ds

] λ̂j,l
t . (F.15)

Appendix G. Detailed Information about Two-Currency Model in Section 3.1

Let πd
t and πd

0,t be the investment values in the three risky assets and money market account held605

by the agent d, respectively. The investment value in risky assets is set to πd
t = (πd

1,t, π
d
2,t, π

d
3,t)

⊤,

where πd
1,t and πd

2,t are the investment value in domestic and foreign stocks, respectively, and πd
3,t is

the investment value in the foreign money market account.
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Then, the optimization problem of agent d is given by:

max
πd
0,t,π

d
t ,c

d,d
t ,cd,ft

E

[∫ T

0

ud
t (c

d,d
t , cd,ft )dt

]
, (G.1)

s.t. dXd
t = πd

0,t

dBd
t

Bd
t

+ πd
1,t

dSd
t + δdt dt

Sd
t

+ πd
2,t

d(qtS
f
t ) + qtδ

f
t dt

qtS
f
t

+ πd
3,t

d(qtB
f
t )

qtB
f
t

−(cd,dt + qtc
d,f
t )dt; Xd

0 = xd
0 > 0, (G.2)

Xd
t ≥ 0; cd,dt ≥ 0; cd,ft ≥ 0; ∀t ∈ [0, T ]. (G.3)

As seen in Section 2.2, we can focus on the following optimization problem involving only consump-610

tion:

max
cd,dt ,cd,ft

E

[∫ T

0

ud
t (c

d,d
t , cd,ft )dt

]
, (G.4)

s.t. E

[∫ T

0

Hd
t (c

d,d
t + qtc

d,f
t )dt

]
≤ xd

0, ∀Hd
t , (G.5)

where Hd
t is the state price density process for currency d.

Thus, to solve the optimization problem (G.4) and (G.5), define the Lagrangian as follows:

L = E

[∫ T

0

αd
t η

d
t

(
γd log cd,dt + (1− γd) log cd,ft

)
dt

]

+yd

(
xd
0 − E

[∫ T

0

Hd
t (c

d,d
t + qtc

d,f
t )dt

])
, (G.6)

where yd is the Lagrange multiplier. Then, the optimization problem can be rewritten as the following

sup-inf problem:615

sup
cd,dt ,cd,ft

inf
yd>0,νd

t ,σ
d
t ν

d
t =0

L(cd,dt , cd,ft , yd, νd), (G.7)

and we focus on its dual problem:

inf
yd>0,νd

t ,σ
d
t ν

d
t =0

sup
cd,dt ,cd,ft

L(cd,dt , cd,ft , yd, νd). (G.8)

The solution to the dual problem (G.8) is given by the following Corollary.

Corollary 1. Following cd,d,∗t , cd,f,∗t , νdt and yd, attain the optimal solution of the inf-sup dual problem

(G.8).

cd,d,∗t =
Zd
t B

d
t α

d
t γ

d

ydZθd

t

, (G.9)

cd,f,∗t =
Zd
t B

d
t α

d
t (1− γd)

ydZθd

t qt
, (G.10)

νdt = −λ̂d,⊥
t , (G.11)

yd =
1− e−βdT

βdxd
0

. (G.12)
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Here, Zθd

t and Zd
t are defined as follows:620

Zθd

t = exp

(
−
∫ t

0

θds · dWs −
1

2

∫ t

0

|θds |2ds
)
; Zθd

0 = 1, (G.13)

Zd
t = exp

(∫ t

0

λ̂d
s · dWs −

1

2

∫ t

0

|λ̂d
s |2ds

)
; Zd

0 = 1. (G.14)

Also, λ̂d,⊥
t is the projection of λd

t onto the orthogonal space of range
(
σd⊤
t

)
, where σd

t =


σd
S,t

σf
S,t + σq

t

σq
t


Proof. First, we consider the following supremum problem:

sup
cd,dt ,cd,ft

αd
t η

d
t

(
γd log cd,dt + (1− γd) log cd,ft

)
− ydHd

t (c
d,d
t + qtc

d,f
t ). (G.15)

Then, we obtain the optimal consumption as follows:

cd,d,∗t =
ηdt α

d
t γ

d

ydHd
t

, (G.16)

cd,f,∗t =
ηdt α

d
t (1− γd)

ydHd
t qt

. (G.17)

Next, setting

Ũ(ydHd
t , t) = αd

t η
d
t

{
γd log cd,d,∗t + (1− γd) log cd,f,∗t

}
− ydHd

t (c
d,d,∗
t + qtc

d,f,∗
t ), (G.18)

we address the following infimum problem:625

inf
νd
t ,σ

d
t ν

d
t =0

E

[∫ T

0

Ũ(ydHd
t , t)dt

]
. (G.19)

Here, the expectation term can be expressed as:

E

[∫ T

0

Ũ(ydHd
t , t)dt

]

= E

[∫ T

0

αd
t η

d
t γ

d(log ηdt + logαd
t + log γd − log yd − logHd

t )dt

]

+E

[∫ T

0

αd
t η

d
t (1− γd)(log ηdt + logαd

t + log (1− γd)− log yd − logHd
t − log qt)dt

]

−E

[∫ T

0

ydHd
t (c

d,d,∗
t + qtc

d,f,∗
t )dt

]
. (G.20)

To solve the infimum problem on νd, we need to focus on:

inf
νd
t ,σ

d
t ν

d
t =0

E

[∫ T

0

−αd
t η

d
t logH

d
t dt

]
(G.21)

= inf
νd
t ,σ

d
t ν

d
t =0

E

[∫ T

0

αd
t η

d
t

(∫ t

0

rsds+
1

2

∫ t

0

|θds + νds |2ds+
∫ t

0

(θds + νds ) · dWs

)
dt

]
(G.22)

= inf
νd
t ,σ

d
t ν

d
T=0

Ed

[∫ T

0

αd
t (

∫ t

0

rsds+
1

2

∫ t

0

|θds + νds |2ds+
∫ t

0

(θds + νds ) ·
(
λd
sds+ dW d

s

)
)dt

]
,(G.23)
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where Ed denotes the expectation under the subjective view. Since νds ⊥ θs, we pick up the term

relating to νds :

inf
νd
t ,σ

d
t ν

d
t =0

Ed

[∫ T

0

(
1

2
|νds |2 + νds · λd

s

)
dt

]
. (G.24)

The infimum is attained at630

νdt = −λ̂d,⊥
t , (G.25)

which implies that ηdt /Hd
t = (Bt/Z

θd

t )Zd
t .

Moreover, substituting ηdt /H
d
t into cd,d,∗t and cd,f,∗t reveals the following equations:

cd,d,∗t =
Zd
t B

d
t α

d
t γ

d

ydZθd

t

, (G.26)

cd,f,∗t =
Zd
t B

d
t α

d
t (1− γd)

ydZθd

t qt
, (G.27)

As in the same way, consumption for the agent f is given by:

cf,f,∗t =
Zf
t B

f
t α

f
t γ

f

yfZθf

t

, (G.28)

cf,d,∗t =
Zf
t B

f
t α

f
t (1− γf )qt

yfZθf

t

, (G.29)

where αf
t and γf are the subjective belief and preference for domestic versus foreign goods for agent

f , respectively.635

Finally, since the constraint must be bind, yd is determined by the following relationship:

yd =
1− e−βdT

βdxd
0

. (G.30)

As seen in Section 2, the solution cd,d,∗t , cd,f,∗t , νdt and yd is also a solution of the original problem

(G.1), (G.2), and (G.3). Also, the equilibrium interest rate rdt and market price of risk θdt can be

derived from the following Corollary 2.640

Corollary 2. Equilibrium interest rate rdt and market price of risk θdt are given by:

rdt = (µd
δ,t − |σd

δ,t|2)

+
∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

βj
t + σd

δ,t ·
∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

λ̂j,t, (G.31)

θdt = σd
δ,t −

∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

λ̂j,t. (G.32)
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Proof. From market clearing conditions, we have:

cd,dt + cf,dt = δdt , (G.33)

cd,ft + cf,ft = δft . (G.34)

The relationship between Zθi

t /Bi
t in domestic (i = d) and foreign (i = f) countries is given by:

qt = q0 exp

[∫ t

0

(
rds − rfs + (θds − θfs ) · θds − 1

2
|θds − θfs |2

)
ds+

∫ t

0

(θds − θfs ) · dWs

]
(G.35)

= q0
Bd

t

Zθd

t

Zθf

t

Bf
t

. (G.36)

By substituting optimal consumption and (G.36) into the market-clearing conditions (G.33) and

(G.34), we obtain the following relationship:645

Zθd

t

Bd
t

=
1

δdt

[
γdαd

tZ
d
t

yd
+

(1− γf )qd0α
f
t Z

f
t

yf

]
; dZθd

t = −Zθd

t θd · dWt; Zθd

0 = 1, (G.37)

Zθf

t

Bf
t

=
1

δft

[
γfαf

t Z
f
t

yf
+

(1− γd)qf0α
d
tZ

d
t

yd

]
; dZθf

t = −Zθf

t θf · dWt; Zθf

0 = 1, (G.38)

dZi
t = Zi

t λ̂i · dWt; Zi
0 = 1; λi = λ̂i ⊕ λ̂⊥

i ; λ̂i ∈ range(σi⊤); i = d, f, (G.39)

where qd0 = q0 and qf0 = 1/q0. Since Zθi

0 = 1 at t = 0, the following equations must be hold:

δd0 =

[
xd
0

βdγd

(1− e−βdT )
+ xf

0

βf (1− γf )q0

(1− e−βfT )

]
Bd

0 , (G.40)

δf0 =

[
xd
0

βd(1− γd)

(1− e−βdT )q0
+ xf

0

βfγf

(1− e−βfT )

]
Bf

0 . (G.41)

Given δi0, βi, γi, xi
0 (i = d, f), and q0, the values of Bd

0 and Bf
0 must satisfy these equations. Alterna-

tively, if δi0, βi, γi, Bi
0 (i = d, f), and q0 are given, then xd

0 and xf
0 should satisfy these equations.

Differentiating the state price density processes in (G.37), we obtain:

d(
Zθd

t

Bd
t

) = (
Zθd

t

Bd
t

)[−rdt dt− θdt · dWt], (G.42)

d

(
γdαd

tZ
d
t

ydδdt
+

(1− γf )qd0α
f
t Z

f
t

yfδdt

)

=
∑
j=d,f

(
αj
tγ

d
j q

d
j

yjδdt

)
Zj
t [{−µd

δ,t + |σd
δ,t|2 − λ̂j,t · σd

δ,t − βj
t }dt+ {λ̂j,t − σd

δ,t} · dWt], (G.43)

where γd
j = γd (γd

j = 1−γf ) when j = d (j = f), and qdj = 1 (qdj = qd0) when j = d (j = f). Comparing650
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the (G.42) and (G.43), we derive expressions for the equilibrium interest rate and market price of risk:

rdt = (µd
δ,t − |σd

δ,t|2)

+
∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

βj
t + σd

δ,t ·
∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

λ̂j,t, (G.44)

θdt = σd
δ,t −

∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

λ̂j,t. (G.45)

Furthermore, we derive the equilibrium volatility of the foreign exchange rate:

σq⊤
t = σd

δ,t − σf
δ,t −


∑
j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
d
j q

d
j

yj

)
Zj
t

λ̂j,t

+


∑
j=d,f

(
αj

tγ
f
j q

f
j

yj

)
Zj
t∑

j=d,f

(
αj

tγ
f
j q

f
j

yj

)
Zj
t

λ̂j,t

 .

(G.46)

Finally, we obtain the equilibrium stock price Sd
t by the following Corollary 3.

Corollary 3. The equilibrium stock price Sd
t is given by:655

Sd
t = δdt

(1−e−βd(T−t))
βd Kd,d

t Zd
t + (1−e−βf (T−t))

βf Kd,f
t Zf

t

Kd,d
t Zd

t +Kd,f
t Zf

t

, (G.47)

where Kd,d
t and Kd,f

t are defined as follows:

Kd,d
t :=

xd
0γ

dβde−βdt

(1− e−βdT )
, (G.48)

Kd,f
t :=

q0x
f
0 (1− γf )βfe−βf t

(1− e−βfT )
. (G.49)

Proof. Since Sd
t Z

θd

t /Bd
t +

∫ t

0
δdsZ

θd

s /Bd
sds is a martingale and Sd

T = 0, we obtain the following rela-

tionship:

Sd
t

Zθd

t

Bd
t

+

∫ t

0

δds
Zθd

s

Bd
s

ds = Et

[
Sd
T

Zθd

T

Bd
T

+

∫ T

0

δds
Zθd

s

Bd
s

ds

]
. (G.50)

Thus, we can express the stock price Sd
t as follows:

Sd
t =

Bd
t

Zθd

t

Et

[∫ T

t

Zθd

s

Bd
s

δdsds

]
. (G.51)

To calculate the stock price, we utilize the following relationships:660

Zθd

t

Bd
t

=
1

δdt

[
γdαd

tZ
d
t

yd
+

(1− γf )qd0α
f
t Z

f
t

yf

]
=

1

δdt

yf (γdαd
tZ

d
t ) + yd((1− γf )qd0α

f
t Z

f
t )

ydyf
, (G.52)

Bd
t

Zθd

t

= δdt
ydyf

yf (γdαd
tZ

d
t ) + yd((1− γf )qd0α

f
t Z

f
t )

, (G.53)

Et

[
Zi
s

]
= Zi

t ; s ≥ t, i = d, f. (G.54)
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By substituting (G.52) and (G.53) into (G.51), we obtain the expression of the stock price in

equilibrium as follows:

Sd
t = δdt

Et

[∫ T

t
yfγdαd

sZ
d
s ds
]
+Et

[∫ T

t
yd(1− γf )qd0α

f
sZ

f
s ds
]

yf (γdαd
tZ

d
t ) + yd((1− γf )qd0α

f
t Z

f
t )

. (G.55)

= δdt

yfγd
(

e−βdt−e−βdT

βd

)
Zd
t + yd(1− γf )qd0

(
e−βf t−e−βfT

βf

)
Zf
t

yf (γdαd
tZ

d
t ) + yd((1− γf )qd0α

f
t Z

f
t )

. (G.56)

= δdt

(1−e−βd(T−t))
βd Kd,d

t Zd
t + (1−e−βf (T−t))

βf Kd,f
t Zf

t

Kd,d
t Zd

t +Kd,f
t Zf

t

. (G.57)

Also, since this model can express Sd
t without complex integral or expectation unlike (56), we can

derive the volatility of the stock directly as follows:665

Sd
t = δdt

(1−e−βd(T−t))
βd Kd,d

t Zd
t + (1−e−βf (T−t))

βf Kd,f
t Zf

t

Kd,d
t Zd

t +Kd,f
t Zf

t

≡ δdtZ
d,f
t , (G.58)

with

Zd,f
t =

(1−e−βd(T−t))
βd Kd,d

t Zd
t + (1−e−βf (T−t))

βf Kd,f
t Zf

t

Kd,d
t Zd

t +Kd,f
t Zf

t

. (G.59)

Note that the volatility of Zd,f
t , denoted by σZd,f

t , is given by

σZd,f

t =

(
(1− e−βd(T−t))

βd
− Zd,f

t

)(
Kd,d

t Zd
t

Kd,d
t Zd

t +Kd,f
t Zf

t

)
λ̂d,t

+

(
(1− e−βf (T−t))

βf
− Zd,f

t

)(
Kd,f

t Zf
t

Kd,d
t Zd

t +Kd,f
t Zf

t

)
λ̂f,t. (G.60)

Hence, as Sd
t = δdtZ

d,f
t , by comparing the diffusion terms of dSd

t and d(δdtZ
d,f
t ), we obtain:

Sd
t σ

d⊤
S,t = δdtZ

d,f
t σd

δ,t + δdt σ
Zd,f

t . (G.61)

Dividing both sides by Sd
t , we obtain the stock volatility as follows:

σd⊤
S,t = σd

δ,t +
1

Zd,f
t

σZd,f

t . (G.62)

Thus, we can express the volatility of the stock price Sd
t as follows:670

σd
S,t = σδ,d⊤

t +
1

Zd,f
t

(
(1− e−βd(T−t))

βd
− Zd,f

t

)(
Kd,d

t

Kd,d
t Zd

t +Kd,f
t Zf

t

)
Zd
t λ̂

⊤
d,t

+
1

Zd,f
t

(
(1− e−βf (T−t))

βf
− Zd,f

t

)(
Kd,f

t

Kd,d
t Zd

t +Kd,f
t Zf

t

)
Zf
t λ̂

⊤
f,t. (G.63)
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Similarly, the volatility of Sf
t is as follows:

σf
S,t = σδ,f⊤

t +
1

Zf,d
t

(
(1− e−βd(T−t))

βd
− Zf,d

t

)(
Kf,d

t

Kf,d
t Zd

t +Kf,f
t Zf

t

)
Zd
t λ̂

⊤
d,t

+
1

Zf,d
t

(
(1− e−βf (T−t))

βf
− Zf,d

t

)(
Kf,f

t

Kf,d
t Zd

t +Kf,f
t Zf

t

)
Zf
t λ̂

⊤
f,t. (G.64)
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