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Abstract

This study introduces a novel generative modeling framework for simulating the term struc-
ture of interest rates. In recent years, generative models have achieved significant progress in
image generation and are increasingly being applied to finance. To the best of our knowledge,
this is the first study to apply a generative model—specifically, a diffusion model—to the term
structure of interest rates. Furthermore, we extend the framework to incorporate conditional
generation mechanisms and v-parameterization. The training dataset consists of spot yield
curves constructed from daily overnight index swap (OIS) rates using cubic Hermite splines.
As base conditioning variables, we use short-term interest rates and changes in consumer price
indexes (CPIs). Empirical analysis covering the period from 2015 to 2025 demonstrates that
our model successfully reproduces the level and shape of yield curves corresponding to histor-
ical macroeconomic conditions and short-term interest rate environments. Additionally, when
incorporating further conditioning variables related to quantitative easing policies, monetary
base, current account balances, and nominal gross domestic product (GDP), we find that the
inclusion of quantitative easing indicator notably enhances the model’s output relative to the
base conditioning case. This suggests improved robustness and representational capacity under
expanded conditioning.

Keywords: Machine Learning, Generative Models, Diffusion Models, Term Structure of Interest
Rates, Yield Curve, Financial Time Series

1 Introduction

Generative models have experienced rapid growth in recent years, particularly within corporate
environments over the past one to two years. However, their application in data-intensive do-
mains—such as investment decision-making and risk management—remains in its early stages,
though it holds considerable promise for future development. Against this backdrop, research into
synthetic data generation in finance using generative models has begun to gain momentum. In this
study, we focus on generating interest rate data—a topic that has received limited attention in prior
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research—and propose a method for constructing synthetic term structures of interest rates using
diffusion models.

The foundation for the development of diffusion models was laid by Ho et al.[1], catalyzing
rapid advancements in the field. For the implementation of synthetic data generation in this study,
we incorporate two key technical innovations in diffusion modeling: conditional generation with
cross-attention mechanisms and v-parameterization. The former was introduced by Rombach et
al.[3], while the latter was proposed by Salimans and Ho[4]. These techniques have been widely
adopted in the primary application areas of diffusion models, such as image and video generation.

Prior studies on synthetic data generation in finance using diffusion models include Chen et al.
[5] , which targets multivariate time series, and Tanaka et al.[6], which transforms time series into
images for conditional training. However, these studies primarily focus on stock price time series.
To the best of our knowledge, no prior work has addressed the term structure of interest rates in
the context of diffusion-based synthetic data generation. Moreover, among the studies in finance
reviewed in this section, none appear to have explicitly implemented v-parameterization. Therefore,
our work is also distinctive in its use of v-parameterization for synthetic data generation.

The remainder of this paper is organized as follows. Section 2 provides an overview of diffusion
models and discusses their technical advancements. Section 3 introduces our proposed methodology
for preparing yield curves as training data and conditional generation of the term structure of
interest rates using diffusion models. In Section 4, we present the results of conditional generation
based on conditioning data from specific historical periods, demonstrating that the inclusion of
conditioning variables enables the model to produce yield curves that closely resemble historical
scenarios. Finally, Section 5 concludes the paper by examining practical implications and potential
applications, and by outlining directions for future research.

2 Diffusion Models

Diffusion models have emerged as a powerful class of generative frameworks, particularly effective
in modeling complex data distributions through iterative denoising processes and their application
to finance has also been proposed. The field of diffusion models has experienced significant growth
since the publication of the Denoising Diffusion Probabilistic Model(DDPM) introduced by Ho et
al.[1]. The following provides an overview of DDPM.

Let x0 ∈ Rd be a sample drawn from an unknown data distribution characterized by the
probability density function p(x). In the context of generative modeling, we aim to approximate
p(x) using a model pθ(x), parameterized by θ and then generate new samples by sampling from
pθ(x).

Since DDPM has developed from diffusion models, it is defined as a latent variable model. In
this context, let x0 represent sample data and assume latent variables x1,x2, . . . ,xT of the same
dimension as the sample data.

An interesting aspect of DDPM lies in its formulation of the forward process, a Markov chain
with Gaussian noise as follows:

{xt}Tt=1, xt =
√

1− βtxt−1 +
√
βtϵ, ϵ ∼ N (0, I), (1)

where N (µ,Σ) denotes a normal distribution with mean µ and variance-covariance matrix Σ.
In this explanation, the variance scheduleβ1 . . . βt are treated as a hyperparameter and assumed to
be set to known values, satisfying 0 < β1 < β2 < · · · < βT < 1.

2



Furthermore, by defining forward process as equation (1), when T is sufficiently large (e.g.,
T = 1000), xT can be regarded as pure noise (i.e., xT ∼ N (0, I)).

According to Ho et al.[1], it is shown that the reverse process which traces the forward process
in reverse order to progressively remove noises, is also a Markov chain with Gaussian transition
probability and that the reverse process can be expressed as follows:

{xt}Tt=1, xt−1 = µθ(xt, t)xt +
√
βtϵ, ϵ ∼ N (0, I). (2)

Then, given equation (2), we estimate µθ(xt, t). This estimation can be performed by a neural
network architecture such as U-Net, enabling the learning of the reverse process. As explained by
Ho et al.[1], instead of estimating µθ(xt, t),the reverse process can also be learned with a model
that predicts the added noise ϵθ(xt, t) given xt and timestep t. This approach to learning the noise
is referred to as noise prediction.

When performing sampling, we assume the initial value for the reverse process xT ∼ N (0, I) so
that xT can be easily generated as a random vector. Then, by following the learned reverse process
to progressively remove the noise, a sample can be obtained. This is the core idea behind DDPM.

Since the introduction of DDPM, theoretical advancements in diffusion models have included the
unification with score-based models and the formulation of both the forward and reverse processes
using continuous-time stochastic differential equations (SDEs),introduced by Song et al.[2]. Within
this continuous-time SDE framework, the forward process in DDPM is represented as a stochastic
process following the Ornstein-Uhlenbeck (OU) process, while the reverse process is expressed
through an SDE derived from the relationship between the Kolmogorov forward and backward
equations.

On the implementation side, one major advancement is conditional generation using cross-
attention mechanisms, introduced by Rombach et al.[3], which enables image generation from words
by connecting diffusion models with language models. Furthermore, to generate larger images more
efficiently, techniques such as DDIM and v-parameterization proposed by Salimans and Ho[4]—both
extensions of noise prediction—have been proposed and are now widely adopted in modern image
generation frameworks, including Stable Diffusion v2.

3 Methodology

This paper aims to perform conditional generation of synthetic term structure of interest rate using
a diffusion model. The procedure is outlined as follows:

Step1: Obtain historical swap rates and construct yield curves using methods commonly applied
in finance. Based on the constructed yield curves, we construct datasets of zero-rates
at quarterly (0.25-year) intervals,which is applied for training data.

Step2: Obtain the macro economic indicators as condition data to be applied during conditional
learning.

Step3: Prepare a diffusion model that supports conditional generation based on both training
data and conditional data.

Step4: Conduct training and perform conditional generation.
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3.1 Data Preparation

3.1.1 Construction of Yield Curve and Interest Rate Dataset

In this study, we assume the simultaneous learning of interest rate data across multiple currencies
and define the following requirements for the training interest rate dataset. The target currencies
are Japanese Yen (JPY), US Dollar (USD), and British Pound (GBP). Furthermore, the interest
rate targeted for training is chosen to be the zero rate used in the valuation of financial instruments,
rather than the market-traded rate. Based on these requirements, the dataset is constructed through
the following steps:

1. Time series data of OIS rates for each currency are obtained from Bloomberg. For details
on the obtained OIS rates, see Appendix A. We collect data from 2010 to 2025. Due to
differences in data availability across currencies, the starting dates of the datasets vary.
However, in order to maximize the amount of data used for training, we do not align
the starting dates and instead included all available data.

2. Since the obtained OIS rates correspond to instruments with annual interest payments,
yearly tenor data is required to construct zero rates. However, due to missing mar-
ket data for certain tenors, standard cubic spline interpolation is applied to generate
interpolated OIS rate data for each currency.

3. Zero rates are constructed from the interpolated OIS rates using the bootstrap method
for each currency. Additionally, following Healy[8], cubic Hermite spline interpolation is
applied to the resulting zero rates. This yielded 120 data points per business day, with
maturities ranging from 0.25 to 30 years for each currency.

4. The data for each currency are merged along the tenor axis to form a single training
dataset. As a result, a dataset with the shape (11,185, 120) is created. where 11,185
represents the number of observations and 120 corresponds to the number of data points
per observation.

3.1.2 Conditional Inputs

We use the following data as conditional inputs for yield curve generation:

Table 1: Condition Data

Data Description Update Frequency

Currency type JPY = 1, USD = 2, GBP = 3 NA

Short-term interest rate Overnight rate(JPY,GBP) or 1-week OIS rate
(USD)

per Business day

Macroeconomic indicators Inflation rates,and other indicators described
in Appendix B

per Month

For details on the obtained condition data, see Appendix B. Although macroeconomic indica-
tors are updated on a monthly basis, we use the indicators displayed on the Bloomberg or LSEG
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Datasteram for a given business day directly to construct the dataset. Given that the dimension
of the conditional features is X, we construct data with a shape of (11,185, X). Both short-term
interest rate and macroeconomic indicators are publicly available and easily accessible, and are
selected as conditioning variables ,which seems closely related to formation of the term structure of
interest rates. The short-term interest rate is considered to have a direct impact on the short end of
the yield curve. Among the components of macroeconomic indicators, inflation rates are regarded
as influencing the determination of medium- to long-term interest rate levels and the shape of the
yield curve.

3.2 Diffusion Model Setup

After preparation of the training data set, we conduct training using a diffusion model. For the
implementation of the model, we refer to the standard diffusion model program utilized in the
evaluation of a diffusion factor model in Chen et al.[5][7], and extend it by incorporating additional
code to support conditional generation and the v parameterization technique for the estimation
object. Although Chen et al.[5] proposes a model to learn latent factors, deploying neural networks
defined in (18) of their article, we understand that the program code corresponds to a standard
diffusion model implementation, using equation (7) in their paper as the objective function, as
stated in Appendix D of Chen et al.[5]. The neural network architecture employed is the 2D U-Net
framework, which is widely adopted in diffusion models, its architecture is as follows.
We reshape the data from a one-dimensional vector of length 120 into a two-dimensional matrix
of size (10, 12). The resulting (10, 12) matrices are then processed using a 2D U-Net architec-
ture consisting of two downsampling layers, one intermediate layer, and two upsampling layers.
To implement conditional learning and sampling, we incorporate cross-attention layers into the
intermediate stages of the U-Net framework according to Rombach et al. [3]. This adaptation
enables the model to effectively utilize macro-level data—which strongly influences the shape of
yield curves.

For the training hyperparameters, we use the cosine schedule for the beta schedule. The number
of training steps is set to 1000, following the DDPM approach.

3.3 Model Training and Synthetic Yield Curve Generation

We train the model for 200 epochs using both interest rate data and conditional macroeconomic
inputs. The training is carried out on a commercial GPU (Geforce 5070) and completed in approx-
imately 30 minutes, demonstrating its practical feasibility. Synthetic yield curves are generated
conditionally based on macroeconomic indicators using the trained model. The input conditional
data must match the dimensionality of the features used during training. For example, if the model
is trained with currency, short-term interest rates, and inflation rates as conditioning variables,
then the scenarios should be provided as a array of shapes (1, 3). Each sample is generated in
1,000 time steps. The generation of 1,024 synthetic samples per condition takes approximately 90
seconds on the same GPU.

4 Results

This section discusses the analysis of the outputs generated by the trained model. To analyze the
impact of conditioning data on generation, we train multiple models using different conditioning
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inputs and conduct a comparative analysis of their generated outputs. In this comparison, condi-
tioning data from specific historical periods are used as inputs, and we also verify their consistency
with the corresponding historical data.

4.1 Impact of Conditional Inputs

First, we choose a model conditioned on currency, short-term interest rates, and inflation rates as
the baseline model for our experiment. To assess the impact of conditional input, we prepare three
models that incrementally add each condition data. The description of each model is summarized
in Table 2.

Figure 1 compares the yield curves generated by each model using the conditional data from
April 2015 with the actual yield curve observed in April 2015. To align with the monthly historical
data, 30 samples are generated. Each colored line represents the sampled yield curve. The results
indicate that the model adapts effectively to different scenarios, producing curves that reflect the
specified economic conditions.

Table 2: Definition of Models in figure 1

Model Name Shape of Condition Inputs
CUR (Currency)

ST Rate (Currency , Short-Term interest Rates)
Baseline (Currency , Short-Term interest Rates, Inflation Rates)

4.2 Empirical Comparison with Historical Data

To evaluate the accuracy of our baseline model, we compare synthetic yield curves generated under
the conditions of a short-term interest rate and an inflation rate for a given historical month with
the actual yield curves from that same period. Since short-term interest rates are available as daily
data, we use the monthly average as an input condition. The number of generated samples is 30
samples, which is determined based on the number of days in each month. Given that there are
three currencies, three comparisons are conducted for each month.

The comparison results for JPY interest rates are shown in Figure 2, those for USD interest
rates are presented in Figure 3, and for GBP interest rates are in Figure 4. In Figures 2 through 4 ,
for better visual clarity, we calculate the mean and standard deviation of the generated yield curves
under each condition, and visualize them using the mean ±1 standard deviation bands. These are
then compared with the corresponding mean and standard deviation of the historical yield curves.

This approach enabled us to clearly assess how closely the model could reproduce key charac-
teristics of the yield curve, especially level, slope, and curvature, under specified macroeconomic
conditions. While greater variance is observed during periods of extreme monetary policy (e.g.,
2020), the generated curves generally capture the level, slope, and curvature of historical data.
Focusing on the results for USD and GBP in 2025, it can be observed that the model is capable of
reproducing not only normal yield curves but also inverted ones, confirming the model’s ability to
reproduce realistic yield curve shapes under standard macroeconomic conditions.
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Figure 1: Comparison of generated and historical yield curves by adding conditions
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Figure 2: Comparison between generated sample and historical data: JPY
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Figure 3: Comparison between generated sample and historical data: USD
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Figure 4: Comparison between generated sample and historical data: GBP
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4.3 Further Analysis with Additional Macroeconomic Indicators

We further examine the incorporation of additional macroeconomic indicators into the baseline
condition set(currency,short-term interest rates, and inflation rates) to capture broader structural
features across different periods and market environments.

To better capture the extreme monetary policies in 2020, we introduce (i)the quantitative eas-
ing (QE) indicator specifically referring to the year-over-year (YoY) growth of the asset purchase
amounts by each country’s central bank, or proxy variables thereof. The exact definitions of the
indicators are provided in Appendix B. For this dataset, we use LSEG Datastream and publicly
available figures from each central bank as data sources.

In addition to the QE indicator, we consider indicators as follows: (ii) monetary base YoY
growth, reflecting the intensity of monetary expansion, (iii) the current account balance to GDP
ratio, and (iv) nominal GDP. Similarly to the QE indicator extension, these indicators are incorpo-
rated separately and simultaneously into the baseline condition set for model training and sample
generation.

To assess the effect of these additional macro conditions, we evaluate the yield curves gener-
ated under the specified conditions by computing (i) the root mean square error (RMSE) between
the generated and historical yield curves for each currency in representative months, and (ii) the
maximum standard deviation (σ) across the samples generated, which reflects the dispersion and
stability of the generation. The numerical results under different conditioning sets are summarized
in Table 3 to Table 5. The results suggest that, for different time periods and currencies, aug-
menting the baseline conditioning set with an additional indicator that is relevant to the prevailing
macro-financial environment can further improve the quality of the generated samples.

4.4 Enhancement with Additional Macro Economic Indicators as Con-
ditions

As a result of RMSE comparison tests conducted with the addition of various macroeconomic
indicators, it is found that the inclusion of the QE indicator and monetary base (QE+MB) for JPY
and the inclusion of the QE indicator, the monetary base and the ratio of current account to GDP
(QE + MB + CA% GDP) for USD and GBP is particularly effective in reproducing historical data.
Based on this finding, an enhanced model is developed by adding these conditional data to the
conditions of the baseline model and training it accordingly, followed by the generation of sample
data.

Figures 5 to 7 present a graphical comparison between the generated samples and the histor-
ical data. The results generated by the enhanced model demonstrate superior reproducibility of
historical data compared to those generated by other models. In particular, there is a significant
improvement in reproducibility for the year 2020, which had been a challenge for the baseline model.

These findings indicate that the proposed method enhances the reproducibility of historical data
by selecting and adding conditional models. In practical applications, depending on the intended use
of synthetic data, different approaches may be considered: for cases requiring strict reproducibility
of historical data, generation using the model with added conditional data is recommended; on the
contrary, when a certain degree of flexibility in synthetic data is desirable, for example, in stress
testing, generation using the baseline model may be more appropriate.
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Table 3: RMSE and maximum standard deviation of generated yield curves under different condi-
tioning sets (JPY). Values are reported as RMSE (basis points) with maximum standard deviation
(percentage) in parentheses.

Conditions 2015-04 2020-04 2025-04

Historical
0.0

(0.03)
0.0

(0.04)
0.0

(0.12)

Baseline
1.1

(0.11)
16.1
(0.19)

10.9
(0.13)

Baseline+QE
0.7

(0.08)
9.2

(0.19)
1.8

(0.11)

Baseline+MB
3.2

(0.07)
2.7

(0.06)
2.9

(0.15)

Baseline+CA%GDP
0.5

(0.04)
2.5

(0.08)
10.8
(0.13)

Baseline+NOMGDP
3.1

(0.09)
10.4
(0.19)

11.4
(0.12)

Baseline+QE+MB
1.0

(0.07)
1.6

(0.05)
0.4

(0.10)

Baseline+QE+MB+CA%GDP
1.3

(0.06)
1.0

(0.05)
11.5
(0.13)

Baseline+QE+MB+NOMGDP
2.2

(0.08)
1.5

(0.06)
1.2

(0.11)

Baseline+QE+MB+CA%GDP+NOMGDP
2.5

(0.07)
0.5

(0.04)
4.6

(0.11)

12



Figure 5: Enhancement with additional condition inputs: JPY
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Table 4: RMSE and maximum standard deviation of generated yield curves under different condi-
tioning sets (USD). Values are reported as RMSE (basis points) with maximum standard deviation
(percentage) in parentheses.

Condition 2015-04 2020-04 2025-04

Historical
0.0

(0.06)
0.0

(0.09)
0.0

(0.11)

Baseline
15.2
(0.20)

89.6
(0.94)

8.7
(0.11)

Baseline+QE
15.3
(0.19)

1.9
(0.08)

4.9
(0.11)

Baseline+MB
9.7

(0.12)
33.1
(0.85)

6.0
(0.11)

Baseline+CA%GDP
13.4
(0.20)

207.7
(0.93)

9.1
(0.11)

Baseline+NOMGDP
14.3
(0.17)

45.8
(0.51)

7.0
(0.15)

Baseline+QE+MB
5.8

(0.11)
0.9

(0.07)
4.6

(0.10)

Baseline+QE+MB+CA%GDP
3.8

(0.10)
1.0

(0.08)
1.3

(0.10)

Baseline+QE+MB+NOMGDP
11.4
(0.14)

1.8
(0.09)

8.9
(0.13)

Baseline+QE+MB+CA%GDP+NOMGDP
9.1

(0.12)
1.0

(0.08)
8.5

(0.11)
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Figure 6: Enhancement with additional condition inputs: USD
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Table 5: RMSE and maximum standard deviation of generated yield curves under different condi-
tioning sets (GBP). Values are reported as RMSE (basis points) with maximum standard deviation
(percentage) in parentheses.

Condition 2015-04 2020-04 2025-04

Historical
0.0

(0.10)
0.0

(0.06)
0.0

(0.11)

Baseline
20.5
(0.15)

17.3
(0.34)

8.8
(0.16)

Baseline+CA%GDP
22.8
(0.19)

1.5
(0.06)

7.0
(0.14)

Baseline+NOMGDP
18.7
(0.16)

23.5
(0.38)

13.2
(0.14)

Baseline+QE
20.4
(0.17)

0.4
(0.06)

2.3
(0.11)

Baseline+MB
11.3
(0.16)

32.4
(0.39)

11.4
(0.15)

Baseline+QE+MB
13.5
(0.16)

0.2
(0.06)

0.8
(0.10)

Baseline+QE+MB+CA%GDP
2.4

(0.15)
0.9

(0.05)
1.3

(0.10)

Baseline+QE+MB+NOMGDP
12.9
(0.16)

1.1
(0.05)

3.2
(0.10)

Baseline+QE+MB+CA%GDP+NOMGDP
4.4

(0.14)
1.4

(0.10)
2.6

(0.11)
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Figure 7: Enhancement with additional condition inputs: GBP
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5 Conclusion

In this study, we proposed a conditional generative framework for synthesizing yield curves using
diffusion models. To the best of our knowledge, this is the first application of diffusion models to the
term structure of interest rates. By conditioning on macroeconomic indicators such as short-term
interest rates and inflation, our model is able to generate realistic and historically consistent yield
curves that reflect underlying economic environments.

This framework offers promising avenues for practical application. First, it can be utilized for
scenario analysis: by specifying future economic scenarios and conditioning on the corresponding
macroeconomic variables—predicted separately—the model can generate yield curves that support
the formulation of bond investment strategies. Second, it can be applied to risk management: by
conditioning on macroeconomic variables associated with stress scenarios, the model can simulate
term structures to estimate potential losses and derive risk metrics. In both cases, the use of
observable macroeconomic indicators and historical data as inputs enables intuitive and transparent
analysis, which we consider a key advantage of the proposed approach. Third, as discussed in Section
4, when policy indicators such as quantitative easing metrics are used as conditioning variables, the
model can be employed to assess the potential impact and effectiveness of policy measures prior to
their implementation in actual markets. This opens up new possibilities for policy evaluation and
macro-financial experimentation.

Future research will focus on expanding the set of conditioning variables to capture more nuanced
economic scenarios, enhancing model robustness under extreme market conditions, and exploring
practical applications in areas such as risk management, asset allocation and development of new
interest rate-related financial products.
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Appendix A: List of obtained interest rate data

Table 6: Overview of Training Data:JPY

Tenor Ticker Start Date End Date

3mo JYSOC Curncy 2010/01/01 2025/07/02
6mo JYSOF Curncy 2010/01/01 2025/07/02
9mo JYSOI Curncy 2010/01/01 2025/07/02
1YR JYSO1 Curncy 2010/01/01 2025/07/02
2YR JYSO2 Curncy 2010/01/01 2025/07/02
3YR JYSO3 Curncy 2010/01/01 2025/07/02
4YR JYSO4 Curncy 2010/01/01 2025/07/02
5YR JYSO5 Curncy 2010/01/01 2025/07/02
6YR JYSO6 Curncy 2010/01/01 2025/07/02
7YR JYSO7 Curncy 2010/01/01 2025/07/02
8YR JYSO8 Curncy 2010/01/01 2025/07/02
9YR JYSO9 Curncy 2010/01/01 2025/07/02
10YR JYSO10 Curncy 2010/01/01 2025/07/02
11YR JYSO11 Curncy 2011/02/01 2025/07/02
12YR JYSO12 Curncy 2010/01/01 2025/07/02
15YR JYSO15 Curncy 2010/01/01 2025/07/02
20YR JYSO20 Curncy 2010/01/01 2025/07/02
25YR JYSO25 Curncy 2010/01/01 2025/07/02
30YR JYSO30 Curncy 2010/01/01 2025/07/02

Table 7: Overview of Training Data:USD

Tenor Ticker Start Date End Date

3mo USSOC Curncy 2012/10/01 2025/07/02
6mo USSOF Curncy 2012/10/01 2025/07/02
9mo USSOI Curncy 2012/10/01 2025/07/02
1YR USSO1 Curncy 2012/10/01 2025/07/02
2YR USSO2 Curncy 2012/10/01 2025/07/02
3YR USSO3 Curncy 2012/10/01 2025/07/02
4YR USSO4 Curncy 2012/10/01 2025/07/02
5YR USSO5 Curncy 2012/10/01 2025/07/02
6YR USSO6 Curncy 2012/10/01 2025/07/02
7YR USSO7 Curncy 2012/10/01 2025/07/02
8YR USSO8 Curncy 2012/10/01 2025/07/02
9YR USSO9 Curncy 2012/10/01 2025/07/02
10YR USSO10 Curncy 2012/10/01 2025/07/02
11YR USSO11 Curncy 2024/07/22 2025/07/02
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Tenor Ticker Start Date End Date

12YR USSO12 Curncy 2012/10/01 2025/07/02
15YR USSO15 Curncy 2012/10/01 2025/07/02
20YR USSO20 Curncy 2012/10/01 2025/07/02
25YR USSO25 Curncy 2012/10/01 2025/07/02
30YR USSO30 Curncy 2012/10/01 2025/07/02

Table 8: Overview of Training Data:GBP

Tenor Ticker Start Date End Date

3mo BPSWSC Curncy 2010/11/29 2025/07/09
6mo BPSWSF Curncy 2010/11/29 2025/07/09
9mo BPSWSI Curncy 2010/11/29 2025/07/09
1YR BPSWS1 Curncy 2010/11/29 2025/07/09
2YR BPSWS2 Curncy 2010/11/29 2025/07/09
3YR BPSWS3 Curncy 2010/11/29 2025/07/09
4YR BPSWS4 Curncy 2010/11/29 2025/07/09
5YR BPSWS5 Curncy 2010/11/29 2025/07/09
6YR BPSWS6 Curncy 2010/11/29 2025/07/09
7YR BPSWS7 Curncy 2010/11/29 2025/07/09
8YR BPSWS8 Curncy 2010/11/29 2025/07/09
9YR BPSWS9 Curncy 2010/11/29 2025/07/09
10YR BPSWS10 Curncy 2010/11/29 2025/07/09
12YR BPSWS12 Curncy 2010/11/29 2025/07/09
15YR BPSWS15 Curncy 2010/11/29 2025/07/09
20YR BPSWS20 Curncy 2010/11/29 2025/07/09
25YR BPSWS25 Curncy 2010/11/29 2025/07/09
30YR BPSWS30 Curncy 2010/11/29 2025/07/09
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Appendix B: List of obtained conditon data

Table 9: Overview of Training Data:USD

Indicator Ticker Detail Transformation process

ST-rate JYMUON Curncy Overnight interest rate of JPY None
ST-rate USSO1Z Curncy 1week OIS rate of USD None
ST-rate SONIO/N Index Overnight interest rate of GBP None
Inflation rate JNCPIYOY Index CPI Index of Japan (yoy %) None
Inflation rate CPI YOY Index CPI Index of U.S. (yoy %) None
Inflation rate UKRPCJYR Index CPI Index of U.K. (yoy %) None
QE Indicator aJPBOJAGOVB1 Japan BOJ accounts, assets, Japan gov-

ernment bonds, JPY
Adjusted to yoy % terms

QE Indicator aUSRHTBA12 U.S. Factors Affecting Reserve Bal-
ances of Depository Institutions, Re-
serve bank credit, Securities held

Adjusted to yoy % terms

QE Indicator aGBBLTEA1 U.K. Holdings of gilts by the BOE asset
purchase facility, GBP

Adjusted to yoy % terms

Monetary Base JNMBYOY Index Monetary Base of Japan(yoy %) None
Monetary Base ARDIMOYY Index Monetary Base of U.S.(yoy %) None
Monetary Base UKMSM41Y Index M4 Money Supply of U.K. (yoy %, sa)3 None
CA to GDP EHCAJP Index Current Account % GDP of Japan None
CA to GDP EHCAUS Index Current Account % GDP of U.S. None
CA to GDP EHCAGB Index Current Account % GDP of U.K. None
Nominal GDP ECOXJPS Index Nominal GDP of Japan (USD bn) Scaling(1/1,000)
Nominal GDP GDP CUR$ Index Nominal GDP of U.S. (USD bn) Scaling(1/1,000)
Nominal GDP ECOXUKS Indexy Nominal GDP of U.K. (USD bn) Scaling(1/1,000)

1Data from LSEG Datastream
2Missing values in the data sources are supplemented using publicly available data from central banks.
3Due to data availability issues, alternative data is used.
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