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Abstract

This work solves the equilibrium price formation problem for the risky stock by combining
mean-field game theory with the binomial tree framework, following the classic approach of Cox,
Ross & Rubinstein. For agents with exponential and recursive utilities of exponential-type, we
prove the existence of a unique mean-field market-clearing equilibrium and derive an explicit
analytic formula for equilibrium transition probabilities of the stock price on the binomial lat-
tice. The agents face stochastic terminal liabilities and incremental endowments that depend
on unhedgeable common and idiosyncratic factors, in addition to the stock price path. We
also incorporate an external order flow. Furthermore, the analytic tractability of the proposed
approach allows us to extend the framework in two important directions: First, we incorporate
multi-population heterogeneity, allowing agents to differ in functional forms for their liabili-
ties, endowments, and risk coefficients. Second, we relax the rational expectations hypothesis
by modeling agents operating under subjective probability measures which induce stochasti-
cally biased views on the stock transition probabilities. Our numerical examples illustrate the
qualitative effects of these components on the equilibrium price distribution.

Keywords: mean-field game, subjective measure, non-rational agents , multiple populations, re-
cursive utility, market-clearing

1 Introduction

The mean-field game (MFG) theory was pioneered independently by the seminal works of Lasry &
Lions [33, 34, 35] and by those of Huang et al. [27, 28, 29] in the mid- to late-2000s. These works
are based on analytic methods using coupled Hamilton-Jacobi-Bellman (HJB) and Kolmogorov
equations. Subsequently, the probabilistic approach to the MFG theory, based on forward-backward
stochastic differential equations (FBSDEs) of McKean-Vlasov type, was established by Carmona
& Delarue [9, 10]. The two volumes by the same authors, [11] and [12], provide full details on the
probabilistic approach and its applications.

The greatest advantage of MFG theory is its ability to transform a complex problem of stochas-
tic differential games among many agents into a standard optimization and fixed-point problem.
A growing body of literature attempts to solve many-agent problems using the MFG technique.
The MFG theory requires, in principle, symmetric interactions among the agents. A particularly
large number of MFG applications can be found in financial and energy markets because sym-
metric interactions are standard in these settings. There are also many economic applications of
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†The author is not responsible in any manner for any losses caused by the use of any contents in this research.
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mean field games, in particular, those focusing on general equilibrium models of growth, inequality
and unemployment, dynamic demand response and persuasion problems among others. See, for
example, [1, 2, 3, 4, 5, 22] and the references therein.

In recent years, there have also been major advances in MFG theory for applications in the
equilibrium price-formation problem, where the asset price process is endogenously constructed
to ensure that supply and demand always balance among the heterogeneous but exchangeable
agents, rather than being exogenously given. Gomes & Saúde [24] present a deterministic model
of electricity price. Its extension with random supply is given by Gomes et al.[23]. Ashrafyan
et al. [6] propose a duality approach transforming these problems into variational ones that are
numerically more tractable. Shrivats et al. [40] deal with a price formation problem for the solar
renewable energy certificate (SREC) by solving FBSDEs of McKean-Vlasov type. Féron et al. [15]
develop a tractable equilibrium model for intraday electricity markets. Sarto et al. [37] study cap-
and-trade pollution regulation and derive the equilibrium price for the carbon emission. Regarding
the price formation of securities, Fujii & Takahashi [19] show that the equilibrium price process
can be characterized by FBSDEs of conditional McKean-Vlasov type. Its strong convergence to
the mean-field limit from a finite-agent setting is proved in [20], and its extension to the presence
of a major player is given in [21] by the same authors. Fujii [16] develops a model that allows
the co-presence of cooperative and non-cooperative populations to learn how the price process is
formed when the agents in one population act in a coordinated manner.

There remain two mathematical limitations in the above results: firstly, the relevant control of
each agent is the trading rate and hence their asset position is constrained to follow an absolutely
continuous process with respect to the Lebesgue measure dt; secondly, the cost function of each
agent consists of penalties on the trading speed and on the inventory size of the assets. Therefore,
the above frameworks cannot deal with the general self-financing trading strategies nor with the
utility functions defined directly in terms of the wealth process of the portfolio. A major obstacle in
dealing with a utility function of the wealth resides in the difficulty of guaranteeing the convexity
of the Hamiltonian associated with the Pontryagin’s maximum principle and in the difficulty of
getting enough regularity to prove the well-posedness of the associated FBSDEs. These problems
are solved by Fujii & Sekine [17, 18] for the agents with exponential utilities by applying the method
of Hu, Imkeller & Müller [26] based on the martingale optimality principle. An extension to the
setting with partial information is studied by Sekine [38]. They find that a novel quadratic-growth
backward SDE (qg-BSDE) of conditional McKean-Vlasov type characterizes the equilibrium risk-
premium process. Unfortunately, however, the existence of the solution of this mean-field qg-BSDE
has been proved only under rather restrictive conditions. This is because the conditional McKean-
Vlasov nature of the equation makes the classical approach of Kobylanski [32] no longer applicable.
Moreover, even if the well-posedness of the equation were to be completely solved, its numerical
evaluation would remain prohibitively difficult. This is a major hurdle for practical applications, a
limitation shared by all existing works of continuous-time framework.

In this work, we study the price-formation problem for the risky stock. To understand how the
equilibrium price process changes its behavior due to the market environment and the differences
in the distribution of characteristics among the agents, it is necessary to obtain more explicit and
numerically tractable solutions than those in the existing literature. To this end, we propose a
framework that combines the MFG theory with the classical idea of binomial trees, initiated by
Sharpe [39] and formalized in Cox, Ross & Rubinstein [13]. By restricting the stock price trajectories
onto a binomial lattice, we are able to search for an appropriate set of transition probabilities that
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clears the stock market in a straightforward way. This discrete-time, tree-based approach is the key
technical device that allows us to incorporate more general market environments without sacrificing
the tractability of the equilibrium solution.

The agents in our model—financial and investment firms—have standard exponential utilities
or recursive utilities of the exponential type. We allow for general stochastic terminal liabilities
and incremental endowments that depend on unhedgeable common factors Y and idiosyncratic
factors Zi, as well as the stock price path. The incremental endowments represent non-tradable
income from a firm’s other business activities. We also analyze the impact of external order flow
from outside groups or a major financial player. The presence of unhedgeable risk factors (Y, Zi)
in these financial items creates an incomplete market for the agents, motivating their demand for
the risky stock to hedge their coupled exposures.

The explicit solutions obtained through our binomial tree approach provide significant analytical
and numerical tractability, allowing us to extend the framework in two important ways that would
be a formidable challenge in the continuous-time setting:

• Addressing Market Heterogeneity: We readily extend the model to a multi-population equi-
librium (Section 4), capturing the structural diversity of the financial sector by allowing
different populations to have distinct functional forms for liabilities, endowments, and risk
characteristics.
• Relaxing Rational Expectations: We generalize the model to agents operating under sub-

jective probability measures (Section 5), which induce stochastically biased state-dependent
views on the stock price transition probabilities. This extension is in the spirit of the re-
cent development in MFG theory initiated by Moll & Ryzhik [36], and relaxes the standard
rational expectation hypothesis implicitly adopted in most of the MFG literature.

Our explicit solutions for the equilibrium transition probabilities enable us to numerically evaluate
the marginal and conditional equilibrium price distributions with respect to the common macroe-
conomic factors Y . Our numerical examples reveal the qualitative behaviors of the equilibrium
distributions to the agents’ characteristics and the above introduced elements.

The analytic tractability achieved via our binomial tree framework is the key contribution
that overcomes the theoretical and numerical difficulties in the continuous-time approaches, which
involve either a (coupled systems of) complex McKean-Vlasov FBSDEs (or qg-BSDEs), or a coupled
system of HJB and Kolmogorov equations. Beyond theoretical advancement, our methodology
offers a readily implementable framework for practical applications. It provides the equilibrium
excess return required to compensate agents for the risk in the stock position, necessary to clear
the market. The ability to obtain such explicit solutions offers a valuable tool for regulatory bodies
performing market stability analysis under various agent-based scenarios.

We structure the rest of the paper as follows: Section 2 investigates the mean-field equilibrium
among the agents with exponential utilities subject to terminal liabilities. Section 3 deals with
an extension to recursive utilities and also introduces cash spending (i.e., nominal consumption)
and incremental endowments. Section 4 studies an extension to the presence of multiple popula-
tions. Section 5 extends the previous frameworks to incorporate agents operating under respective
subjective measures which induces state-dependent stochastic biases. Section 6 provides several
illustrative numerical examples and examines their important implications. Section 7 summarizes
our findings and discusses possible directions for future research. 1

1For the sake of gender-neutrality and brevity, the singular pronoun ’they’ (and its forms) is used throughout the
paper when referring to an anonymous agent or entity (e.g., agent-i).
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2 Exponential utility with terminal liability

We begin our investigation into the mean-field price formation problem by considering a simple
model with a countably infinite number of agents possessing exponential utility. These agents are
optimizing their wealth with terminal liability by carrying out self-financing trading strategies on
a deterministic money market account and a single risky stock. Each agent must manage financial
risk arising from the common market shocks as well as their own idiosyncratic shocks. Notably,
our model incorporates non-tradable macroeconomic and/or environmental shocks that affect all
the agents, in addition to the shocks from the stock price process.

Remark 2.1 (On the stock). In this work, the financial institution’s overall equity exposure is
simplified to a single asset which serves as a proxy for a broad, diversified market index (e.g., S&P
500) to keep the focus on the mean-field price formation problem.

2.1 The setup and notation

Let us start from explaining the relevant probability spaces. (Ω0,F0, (F0
tn)Nn=1,P0) is a complete

filtered probability space, where 0 = t0 < t1 < · · · < tN = T is an equally spaced time sequence
using a time step ∆ := T/N where T <∞ and N ∈ N are given constants. The filtration (F0

tn)Nn=0

is generated by two stochastic processes, one is a strictly positive process (Sn := S(tn))Nn=0 and the
other is a dY -dimensional process (Yn = Y (tn))Nn=0, i.e. F0

tn := σ{Sk, Yk, 0 ≤ k ≤ n}. In the model
below, we shall use Sn to denote the stock price at tn and Yn the common shocks affecting all the
agents at tn. S0 > 0 and Y0 ∈ RdY are given constants and thus F0

0 is trivial.
In addition to the above space, we consider a countably infinite number of complete filtered

probability spaces (Ωi,F i, (F itn)Nn=0,Pi), i ∈ N. For each i, (Ωi,F i, (F itn)Nn=0,Pi) is endowed with
F i0-measurable random variables (ξi, γi) as well as (F itn)Nn=0-adapted stochastic process (Zin =
Zi(tn))Nn=0. Here, ξi, γi are both R-valued and ξi is used to represent the initial wealth and γi
the size of absolute risk aversion of agent-i. The dZ-dimensional process (Zin)Nn=0 is used to model
idiosyncratic shocks to each agent. The fact that (ξi, γi) are F i0-measurable means that the agent-i
knows their initial wealth and the size of risk aversion at time zero.

By the standard procedures (see, for example, Klenke [31, Chapter 14]), the complete filtered
probability space (Ω,F , (Ftn)Nn=0,P) is defined as the product of all the above spaces

(Ω,F , (Ftn)Nn=0,P) := (Ω0,F0, (F0
tn)Nn=0,P0)⊗∞i=1 (Ωi,F i, (F itn)Nn=0,Pi)

which denotes the full probability space containing the entire environment of our model. Therefore,
by construction, ((Sn), (Yn)) and (ξi, γi, (Z

i
n)), i ∈ N are mutually independent. On the other hand,

the relevant probability space for each agent-i is the product probability space defined by

(Ω0,i,F0,i, (F0,i
tn )Nn=0,P0,i) := (Ω0,F0, (F0

tn)Nn=0,P0)⊗ (Ωi,F i, (F itn)Nn=0,Pi),

which reflects our assumption that common shocks are public knowledge, but the idiosyncratic
shocks are private to each agent. We shall use the same symbols, such as (Sn, Yn, γi, · · · ), if they
are defined as trivial extensions on larger product probability spaces. Expectations with respect to
P0, Pi, P0,i and P are denoted by E0[·], Ei[·], E0,i[·] and E[·], respectively. We also denote by E[·]
the expectation with respect to the product measure ⊗∞i=1Pi.

In this work, we restrict the trajectories of (Sn)Nn=0 onto a recombining binomial tree. For each
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n = 1, · · · , N , the random variable R̃n := Sn/Sn−1 takes only the two possible values, either ũ or d̃.
This means that the set of all possible values taken by Sn is given by Sn := {S0ũ

kd̃n−k, 0 ≤ k ≤ n},
which is a finite subset of (0,∞). Let Sn := S0 × S1 × S2 × · · · × Sn be the set of all values taken
by the stock price trajectory (Sk)

n
k=0. Moreover, in order to avoid technicalities regarding the

conditional probabilities, we also assume that the process Y takes only a finite number of values
at every tn. We use Yn, which is a finite subset of RdY , to denote the set of all values taken by Yn.
We also use Yn := Y0 × Y1 × · · · × Yn ⊂ RdY ×(n+1) for each 0 ≤ n ≤ N , to represent the set of all
values taken by the trajectory (Yk)

n
k=0. In a similar manner, we denote the support of the random

variable Zin by Zn and define Zn := Z0×Z1×· · ·×Zn as the support of (Zik)
n
k=0. There is no need

to impose the restriction of finite state space on variables other than (S, Y ). The time-tn value
of the risk-free money market account is given by exp

(
rn∆

)
where r > 0 is a positive constant

denoting the risk-free (nominal) interest rate. We also use the symbol β := exp(r∆). For later use,
let us also define

u := ũ− exp(r∆), d := d̃− exp(r∆)

and
Rn := R̃n − exp(r∆), 1 ≤ n ≤ N.

The random variable Rn takes the values either u or d.
In the following, to lighten the notational burden, we use E0,i

[
· |s, y, zi, γi

]
to denote E0,i

[
· |Sn−1 =

s, Yn−1 = y, Zin−1 = zi, γi = γi
]

for (s, y, zi) ∈ Sn−1×Yn−1×Zn−1. With a slight abuse of notation,
we shall use the same symbols for the realizations of F i0-measurable random variables (γi in the
above example).

Assumption 2.1. (i): ũ and d̃ are real constants satisfying 0 < d̃ < exp(r∆) < ũ <∞.
(ii): Every (ξi, γi, (Z

i
n)Nn=0) is identically distributed across all agents i = 1, 2, . . ..

(iii): There exist constants ξ, ξ and γ, γ so that for every i ∈ N,

ξi ∈ [ξ, ξ] ⊂ R, γi ∈ Γ := [γ, γ] ⊂ (0,∞).

(iv): For every 0 ≤ n ≤ N , Zn is a bounded subset of RdZ .
(v): For each i, (Zin)Nn=0 is a Markov process i.e., Ei[f(Zin)|F itk ] = Ei[f(Zin)|Zik] for every bounded
measurable function f on Zn and k ≤ n.
(vi): (Yn)Nn=0 is a Markov process i.e., E0[f(Yn)|F0

tk
] = E0[f(Yn)|Yk] for every bounded measurable

function f on Yn and k ≤ n.
(vii): The transition probabilities of (Sn)Nn=0 satisfy, for every 0 ≤ n ≤ N − 1,

P0(Sn+1 = ũSn|F0
tn) = P0(Sn+1 = ũSn|Sn, Yn) =: pn(Sn, Yn),

P0(Sn+1 = d̃Sn|F0
tn) = P0(Sn+1 = d̃Sn|Sn, Yn) =: qn(Sn, Yn),

where pn, qn (= 1− pn) : Sn×Yn → R, 0 ≤ n ≤ N − 1 are bounded measurable functions satisfying

0 < pn(s, y), qn(s, y) < 1

for every (s, y) ∈ Sn × Yn.

Let us give some remarks on the above assumptions. Firstly, by the condition (i), we have
d < 0 < u. It is well-known that the transition probabilities under the risk-neutral measure Q for
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the classical binomial framework are given by pQ := (−d)/(u− d) = (exp(r∆)− d̃)/(ũ− d̃) for the
up-move and qQ := 1− pQ for the down-move. These probabilities are uniquely determined by the
parameters (ũ, d̃) and the risk-free interest rate. In this paper, we fix the relative jump size (ũ, d̃)
to be constant across all nodes; however this is done merely for simplicity. The entire discussion
of our paper still holds even if (ũ, d̃) varies from node to node. In fact, the method works even
for general non-recombining binomial trees. Moreover, thanks to the famous result by Derman &
Kani (1994) [14], one can construct so-called “implied binomial trees” by adjusting the position
(ũ, d̃) node by node to reproduce implied volatility surface in the option market, while keeping the
recombining property of binomial trees intact. Therefore, if necessary, our discussion below can
be applied to a binomial tree whose risk-neutral distribution is consistent with the option market.
The boundedness assumption in (iii) and (iv) is not crucial. One can relax it by adding appropriate
integrability conditions.

Our goal in this section is to find a set of transition probabilities of the form
(
pn(s, y))N−1

n=0 so
that the demand and supply of the stock are balanced among the agents at every node (s, y) ∈
Sn×Yn, 0 ≤ n ≤ N − 1. Note that we can assume, without any loss of generality, that the process
(Yn)Nn=0 and (Zin)Nn=0 are Markov, since, if necessary, we can recover Markovian property by lifting
Y,Zi to higher dimensional processes. However, the condition (vii) is not trivial. In fact, in the next
section, we shall study more general situations where the transition probability must be dependent
on the past history of the stock price to achieve the market-clearing equilibrium. Under the current
condition (vi) and (vii), (Sn+1, Yn+1) satisfy the property:

E0[f(Sn+1)g(Yn+1)|F0
tn ] = E0[f(Sn+1)|Sn, Yn]E0[g(Yn+1)|Yn], 0 ≤ n ≤ N − 1, (2.1)

for any bounded measurable functions f : Sn+1 → R and g : Yn+1 → R. We can interpret that the
process (Yn)Nn=0 represents some standalone macroeconomic and/or environmental factors which
are not influenced by the agents’ trading activities. It may naturally serve as a state process in
regime switching models.

Remark 2.2. Note that the bound for the transition probabilities in (vii) guarantees the equivalence
of probability measures P0 ◦ S−1

n and Q ◦ S−1
n . Hence, our system is arbitrage free.

2.2 The individual optimization problem

To obtain the market-clearing equilibrium of the risky stock among a large number of strategically
interacting agents, we adopt the Mean-Field Game (MFG) technique. The standard MFG approach
involves two steps: (i) we assume the stock price process (or transition probabilities in our case),
which is formed by the collective actions of the agents and adapted to the public information
(F0

tn)Nn=0, is given and then solve each agent’s optimization problem as a price taker; (ii) we solve
the fixed-point problem of the consistency condition, (i.e., the market-clearing), to obtain the
equilibrium price distribution. In this subsection, we address the optimization task of step (i).

We now formulate the optimization problem for each agent. Agent-i, for i ∈ N, with an initial
wealth ξi, engages in self-financing trading involving the risk-free money market account and a
single risky stock. They adopt an (F0,i

tn )N−1
n=0 -adapted trading strategy (φin)N−1

n=0 , representing the
invested amount of cash in the stock at time tn. The associated wealth process of agent-i, denoted
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by (Xi
n = Xi(tn))Nn=0, follows the dynamics

Xi
n+1 = exp(r∆)(Xi

n − φin) + φinR̃n+1

= βXi
n + φinRn+1,

where Xi
0 = ξi and β = exp(r∆). Recall that Rn+1 := R̃n+1 − exp(r∆).

Each agent-i is supposed to solve the optimization problem:

sup
(φin)N−1

n=0 ∈Ai
E0,i
[
− exp

(
−γi

(
Xi
N − F (SN , YN , Z

i
N )
))
|F0,i

0

]
, (2.2)

where
Ai :=

{
(φin)N−1

n=0 : φin is an F0,i
tn -measurable real random variable

}
denotes the admissible control space. Here, we assume that agent-i has full knowledge of the
common market information and their own private idiosyncratic information, but no knowledge of
the private idiosyncratic information of the other agents.

Assumption 2.2. (i): F : SN × YN ×ZN → R is a bounded measurable function.
(ii): Every agent is a price-taker in the sense that they consider the stock price process (and hence
its transition probabilities specified in Assumption 2.1 (vii)) to be exogenously given by the collective
actions of the others and unaffected by the agent’s own trading strategies.

F (SN , YN , Z
i
N ) denotes the stochastic terminal liability (or the negative of the terminal endow-

ment), depending on SN , YN and ZiN . Given the exponential utility assumption, the constant shift
F → F +c does not alter the optimization problem; hence, only the dependence on (SN , YN , Z

i
N ) in

the function F is relevant. The condition (ii) is a plausible assumption since every agent naturally
knows their individual trading share is negligible in the market. This negligibility of individual
actions is a key assumption for the standard MFG technique, as previously remarked.

Remark 2.3. Before solving the optimization problem, we provide some economic motivations
for including the stochastic terminal liability F (SN , YN , Z

i
N ). Since we primarily model various

financial firms as our agents, it is natural to suppose that they are subject to stochastic liabilities
(such as a portfolio of derivative contracts) dependent on the stock price. It is also plausible that
the size of the liability varies from agent to agent based on their idiosyncratic factors (ZiN ) as well
as common macroeconomic/environmental factors (YN ). This structure would naturally hold for
non-financial firms, too.

We now characterize the optimal trading strategy for each agent. Applying the well-known
scheme of backward induction for discrete-time models, but now in the presence of common as well
as idiosyncratic shocks, we establish the following result.

Theorem 2.1. Let Assumptions 2.1 and 2.2 be in force. Then the problem (2.2) has a unique
optimal solution (φi,∗n−1)Nn=1, which is an a.s. bounded process defined by a measurable function
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φi,∗n−1 : Sn−1 × Yn−1 ×Zn−1 × Γ→ R such that φi,∗n−1 := φi,∗n−1(Sn−1, Yn−1, Z
i
n−1, γi), where

φi,∗n−1(s, y, zi, γi) :=
1

γi(u− d)

βn

βN

{
log
(
−pn−1(s, y)u

qn−1(s, y)d

)
+ log

(
fn−1(s, y, zi, γi)

)}
,

fn−1(s, y, zi, γi) :=
E0,i[Vn(sũ, Yn, Z

i
n, γi)|y, zi, γi]

E0,i[Vn(sd̃, Yn, Zin, γi)|y, zi, γi]
.

(2.3)

Here, fn−1 : Sn−1×Yn−1×Zn−1×Γ→ R and Vn : Sn×Yn×Zn×Γ→ R are a.s. strictly positive
bounded measurable functions defined recursively for 1 ≤ n ≤ N by

VN (s, y, zi, γi) := exp
(
γiF (s, y, zi)

)
,

and

Vn−1(s, y, zi, γi) := pn−1(s, y) exp
(
−γi

βN

βn
φi,∗n−1(s, y, zi, γi)u

)
E0,i[Vn(sũ, Yn, Z

i
n, γi)|y, zi, γi]

+ qn−1(s, y) exp
(
−γi

βN

βn
φi,∗n−1(s, y, zi, γi)d

)
E0,i[Vn(sd̃, Yn, Z

i
n, γi)|y, zi, γi].

(2.4)

The function log Vn can be interpreted as the continuation value of the liability at time tn.

Proof. With VN : SN × YN × ZN × Γ → R defined by VN (s, y, zi, γi) = exp
(
γiF (s, y, zi)

)
, we

temporarily suppose that the problem of agent-i at t = tn−1, 1 ≤ n ≤ N , is defined by

sup
φi

E0,i
[
− exp

(
−γi

βN

βn
Xi
n

)
Vn(Sn, Yn, Z

i
n, γi)|F

0,i
tn−1

]
, (2.5)

with some a.s. strictly positive bounded measurable function Vn : Sn×Yn×Zn×Γ→ R. Here, the
supremum is taken over F0,i

n−1-measurable real random variables. Let us solve the above problem
on the set {ω0,i ∈ Ω0,i : (Xi

n−1, Sn−1, Yn−1, Z
i
n−1, γi) = (xi, s, y, zi, γi)}2. Then the above problem

is equivalent to

inf
φi∈R

E0,i
[
exp
(
−γi

βN

βn
(βxi + φiRn)

)
Vn(sR̃n, Yn, Z

i
n, γi)

∣∣xi, y, zi, γi]
= exp

(
−γi

βN

βn−1
xi
)

inf
φi∈R

{
pn−1(s, y) exp

(
−γi

βN

βn
φiu
)
E0,i[Vn(sũ, Yn, Z

i
n, γi)|y, zi, γi]

+ qn−1(s, y) exp
(
−γi

βN

βn
φid
)
E0,i[Vn(sd̃, Yn, Z

i
n, γi)|y, zi, γi]

}
,

where we have used the property given in Assumption 2.1 (vii). Since d < 0 < u, the optimal
position φi,∗ is a.s. uniquely characterized by

pn−1(s, y)u exp
(
−γi

βN

βn
φi,∗u

)
E0,i[Vn(sũ, Yn, Z

i
n, γi)|y, zi, γi]

+ qn−1(s, y)d exp
(
−γi

βN

βn
φi,∗d

)
E0,i[Vn(sd̃, Yn, Z

i
n, γi)|y, zi, γi] = 0.

2With a slight abuse of notation, we use the same symbols for the realizations of F i0-measurable random variables.
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This gives the results given in (2.3), which is well-defined and bounded since Vn is a strictly positive
and bounded, and 0 < pn−1, qn−1 < 1 by our assumption.

It follows that the function Vn−1 defined by (2.4) becomes once again a.s. strictly positive and
bounded on Sn−1 × Yn−1 ×Zn−1 × Γ. The value function at the next step tn−1 is now defined by

− exp
(
−γi

βN

βn−1
Xi
n−1

)
Vn−1(Sn−1, Yn−1, Z

i
n−1, γi)

and we have recovered the problem of the same form as in (2.5). Thus the repeat of the above
procedures N times yields the desired conclusion.

2.3 Mean-field equilibrium under stochastic order flow

Our goal is to find a set of transition probability functions pn(s, y), (s, y) ∈ Sn×Yn, 0 ≤ n ≤ N −1,
that clears the market by matching demand and supply at every node. To ensure generality, we also
incorporate an external stochastic order flow, Ln−1(Sn−1, Yn−1), which represents the aggregate net
stock supply per capita at each time tn−1, for 1 ≤ n ≤ N . The external order flow serves to model
the aggregate contribution from other populations. In particular, it can be used to represent the
aggregate net supply from individual investors, which is often difficult to be modeled by rigorous
optimizations, or the supply from a major financial institution such as a central bank.

Assumption 2.3. For every 1 ≤ n ≤ N , Ln−1 : Sn−1 × Yn−1 → R is a bounded measurable
function.

Definition 2.1. We say that the system is in the mean-field equilibrium if

lim
Np→∞

1

Np

Np∑
i=1

φi,∗n−1(Sn−1, Yn−1, Z
i
n−1, γi) = Ln−1(Sn−1, Yn−1),

P-a.s. for every 1 ≤ n ≤ N with φi,∗n−1 defined by (2.3).

Since the idiosyncratic factors (Zi, γi), i ∈ N are independent and identically distributed (i.i.d.),
and also independent of the process (S, Y ), the above condition for the mean-field equilibrium is
equivalently expressed as

E1
[
φ1,∗
n−1(s, y, Z1

n−1, γ1)
]

= Ln−1(s, y) (2.6)

for every (s, y) ∈ Sn−1 × Yn−1, 1 ≤ n ≤ N . Under the mean-field equilibrium, the excess de-
mand/supply per capita converges to zero as the population size tends to infinity. Our first main
result is then established as follows. One can observe a conditional McKean-Vlasov nature, where
the transition probabilities depend on the distribution of idiosyncratic factors conditioned on the
realization of common shocks (S, Y ), as expected from the result in [19, 17].

Theorem 2.2. Let Assumptions 2.1, 2.2 and 2.3 be in force. Then there exists a unique mean-field
equilibrium and the associated transition probabilities of the stock price are given by

pn−1(s, y) := P0
(
Sn = ũSn−1|(Sn−1, Yn−1) = (s, y)

)
= (−d)

/{
u exp

( 1

E1[1/γ1]

[
E1
( log(fn−1(s, y, Z1

n−1, γ1))

γ1

)
− (u− d)

βN

βn
Ln−1(s, y)

])
− d
}
,

(2.7)
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for every (s, y) ∈ Sn−1 × Yn−1, 1 ≤ n ≤ N . Under the above transition probabilities, the optimal
strategy of agent-i is given by

φi,∗n−1(s, y, Zin−1, γi) =
1

(u− d)

βn

βN

{ log fn−1(s, y, Zin−1, γi)

γi
− 1/γi

E1[1/γ1]
E1
[ log fn−1(s, y, Z1

n−1, γ1)

γ1

]}
+

1/γi
E1[1/γ1]

Ln−1(s, y).

(2.8)

Moreover, there exists some positive constant Cn−1 such that

E
∣∣∣ 1

Np

Np∑
i=1

φi,∗n−1(Sn−1, Yn−1, Z
i
n−1, γi)− Ln−1(Sn−1, Yn−1)

∣∣∣2 ≤ Cn−1

Np
(2.9)

for every 1 ≤ n ≤ N , which gives the convergence rate in the large population limit.

Proof. The first claim (2.7) is a direct consequence of (2.3). The form of pn−1(s, y) is uniquely
determined by the condition (2.6). By substituting the resultant expression for pn−1(s, y) (and
qn−1(s, y)) into (2.3), we obtain (2.8).

We only need to verify that the set of (pn−1(s, y)) satisfies the condition (vii) in Assumption 2.1.
At t = tN−1, fN−1 is an a.s. strictly positive and bounded function on SN−1×YN−1×ZN−1×Γ by
the corresponding assumption on F . Since d < 0 < u, it is easy to see 0 < pN−1(s, y), qN−1(s, y) < 1
for every (s, y) ∈ SN−1 × YN−1, and hence consistent with the condition. This then implies that
φi,∗N−1 is an a.s. bounded function on SN−1×YN−1×ZN−1×Γ, which results in a.s. strictly positive
and bounded VN−1 given by (2.4) on SN−1 × YN−1 × ZN−1 × Γ. This in turn ensures that fN−2

satisfies the desired properties, and so do (pN−2(s, y), qN−2(s, y)), (s, y) ∈ SN−2 × YN−2. In this
way, by simple induction, we get the desired consistency for every time step.

For the second claim, it suffices to show that there is some constant Cn−1 such that an inequality

E
∣∣∣ 1

Np

Np∑
i=1

φi,∗n−1(s, y, Zin−1, γi)− Ln−1(s, y)
∣∣∣2 ≤ Cn−1

Np

holds for every (s, y) ∈ Sn−1 × Yn−1, 1 ≤ n ≤ N . Using the i.i.d. property of (Zin−1, γi) and the
boundedness of fn−1, Ln−1 and 1/γi, we can arrange the expression (2.8) to show that there exists
some constant Cn−1 such that

E
∣∣∣ 1

Np

Np∑
i=1

φi,∗n−1(s, y, Zin−1, γi)− Ln−1(s, y)
∣∣∣2

≤ Cn−1

N2
p

E
[∣∣∣ Np∑
i=1

( 1

γi
− E1

[ 1

γ1

])∣∣∣2 +
∣∣∣ Np∑
i=1

( log fn−1(s, y, Zin−1, γi)

γi
− E1

[ log fn−1(s, y, Z1
n−1, γ1)

γ1

])∣∣∣2]
≤ Cn−1

Np
E1

[∣∣∣ 1

γ1
− E1

( 1

γ1

)∣∣∣2 +
∣∣∣ log fn−1(s, y, Z1

n−1, γ1)

γ1
− E1

[ log fn−1(s, y, Z1
n−1, γ1)

γ1

]∣∣∣2]
which establishes the desired result. Note that the cross terms appearing in the second line vanish
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due to the independence of (Zi, γi)i∈N. The variances in the righ-hand side of the third line are
finite uniformly in (s, y) ∈ Sn−1 ×Yn−1, owing to the boundedness of functions fn−1 and 1/γi.

Remark 2.4 (On the choice of exponential utility). Before considering the implications of these
findings, we offer a brief remark on our choice of exponential utility. The most important char-
acteristic of the exponential utility is that the optimal trading strategy φi,∗ is independent of the
wealth process Xi as shown in (2.3). This property is crucial for solving the mean-field condition
in Theorem 2.2. Indeed, if other utilities were adopted, the optimal position φi,∗n would generally
depend on the agent’s wealth Xi

n. The equilibrium condition (2.6) would then yield a complex fixed-
point problem involving the forward Xi and backward φi,∗ processes. The exponential utility also
allows the agents to hold negative net wealth. This is quite advantageous for modeling financial
institutions who naturally hold substantial portfolios of derivatives, the values of which can be neg-
ative with nonzero probabilities. Although the constant absolute risk aversion (CARA) is a clear
limitation, given that most financial institutions routinely revise their risk management objectives,
the restriction of CARA for a relatively short-term horizon T seems to be a reasonable approxima-
tion. The same observations hold for the recursive utility of exponential-type, which we discuss in
Section 3.

2.4 Some implications

Let us discuss some implications of the results obtained in this section. A key advantage of our
closed-form solution is the explicit dependence of the transition probabilities (pn−1(s, y)) on the
macroeconomic factor Y . This allows us to clearly analyze how changes in the macroeconomic
conditions affect the equilibrium price distribution and consequently the excess return.

In order to understand the qualitative behavior of our model, assume first that there is no
external order flow, i.e., L ≡ 0 for simplicity. Recalling that the risk-neutral probability of the
up-move at each node is pQ = (−d)/(u − d), one can see from (2.7) that pn−1(s, y) > pQ (i.e. a
positive excess return at this node) occurs if and only if

E1[log(fn−1(s, y, Z1
n−1, γ1))/γ1] < 0.

This happens if Vn is a decreasing function of the stock price Sn, where Vn represents the continu-
ation liability derived from the terminal liability F . In Section 6, we shall confirm this point with
numerical examples. The corresponding situation occurs when the agents’ liability (or, the negative
of their endowment) decreases as the stock price increases. In this case, adding to the long position
in the stock increases the risk in the same direction as the liability’s exposure, and hence the agents
require a higher risk premium. Therefore, for a liability whose size varies countercyclically with
the stock price, the higher the leverage of the financial and investment firms, the higher the risk
premium demanded. Suppose, on the other hand, that the agents’ liability increases when the stock
price goes up. For example, imagine that agents have a net short position in call options on the
stock. Then, the agents have a strong incentive to increase their long position in the same stock
(to hedge the options), and hence may accept even a negative risk premium.

As one can see from (2.7), it is not necessary to add idiosyncratic shocks to significantly influence
the size of excess return, which is mainly determined by the sensitivity of the liability to the stock
price. However, the absence of idiosyncratic shocks gives rise to a very unrealistic market structure
where there is no trade among the agents. From the expression of the optimal position in (2.8), we
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can observe that the trading volume per capita E[|φ1,∗
n |2]

1
2 in the market is primarily governed by

the variation of the idiosyncratic factors. Note that, by the definition of the mean-field equilibrium,
E[φ1,∗

n ] = 0,∀i ∈ N when Ln = 0. Therefore, E[|φ1,∗
n |2]

1
2 gives the standard deviation of the stock

position among the agents at tn.
In addition to the condition L ≡ 0, let us now suppose that the function F is independent of

the stock price. We then have fN−1 = 1 a.s. since VN is SN -independent and thus φi,∗N−1 = 0 a.s. by
(2.8). This in turn makes VN−1 independent from SN−1. In this way, a simple induction shows
that fn−1 = 1 a.s. for every 1 ≤ n ≤ N and the equilibrium price distribution becomes equal to
the one in the risk-neutral measure. In this case, there is no trade in the market although each
agent has different risk aversion, which corresponds to the classical (but uninteresting) example of
the representative agent with CARA utility.

Finally, let us turn on the external order flow. It is clearly seen from (2.7) that the positive
inflow L > 0 to the stock market increases the equilibrium risk premium. This may sound slightly
counter-intuitive since we think a big sell-off in the stock should lead to a sharp decline in the stock
price. In order to understand that there is no contradiction, it is important to recall that what
we have found above is the transition probabilities so that there exists equilibrium. As a common
characteristic of price-formation frameworks, our model does not argue the performance of a stock
price given the business performance of its issuer. Rather, it provides the excess return (and
more generally price distribution) required by the agents to support the existence of the market
equilibrium. If there is positive supply of the stock, the agents must accept larger long position
(and hence larger risk) in the stock to maintain the balance of demand and supply; consequently,
the agents require a higher risk premium to compensate for this additional risk. If the risk premium
is not high enough, there would be no equilibrium and thus the stock market might crash. If the
required risk premium turns out to be unrealistically high, then one can infer that the stock market
cannot support such a large external supply. The same analysis can be done for the sustainability
of the stock equilibrium under highly levered financial firms.

3 Recursive utility with path-dependent financial items

In the previous section, we obtained mean-field equilibrium by choosing an appropriate set of
transition probabilities in the form of pn(s, y). Suppose now that the stochastic liability (or the
negative of the endowment) F is dependent not only on the terminal stock price SN but also
on the stock-price history (Sn)Nn=0, which is just as plausible. In this case, a quick inspection of
the proofs for Theorems 2.1 and 2.2 shows that the transition probabilities of the simple form
pn(s, y) cannot clear the market anymore. This strongly suggests that we need path-dependence
also in the transition probabilities. We also want to examine whether we can include cash spending
(i.e. nominal consumption) and to analyze its impact on the excess return. In this section, we
shall thus adopt recursive utility that incorporates standard time-separable utility over nominal
consumptions as its special case. We include a path-dependent terminal liability as well as path-
dependent incremental endowments in the model for generality.

3.1 The setup and notation

In this section, for each i ∈ N, we enlarge the probability space (Ωi,F i, (F itn)Nn=0,Pi) so that it sup-
ports (ξi, γi, ζi, ψi, δi) as F i0-measurable random variables, in addition to (F itn)Nn=0-adapted stochas-
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tic process (Zin = Zi(tn))Nn=0. Here, ζi is the coefficient of absolute risk aversion for cash spending
and the parameter ψi is used to control the importance of the continuation utility relative to the cur-
rent spending. δi denotes the coefficient of time preference. We introduce an F i0-measurable 4-tuple
%i := (γi, ζi, ψi, δi) for simpler notation. Let us also introduce the symbol Sn := (S0, S1, . . . , Sn) to
denote a stock-price trajectory and sn = (s0, . . . , sn) ∈ Sn as its specific realization. For s ∈ Sn−1,
we also use the symbols (sũ)n := (sn−1, sn−1ũ) ∈ Sn and (sd̃)n := (sn−1, sn−1d̃) ∈ Sn. As in the
last section, we shall use the expressions such as E0,i[ · |s, y, zi, %i] for (s, y, zi) ∈ Sn−1×Yn−1×Zn−1

to denote the conditional expectation E0,i[ · |Sn−1 = s, Yn−1 = y, Zin−1 = zi, %i = %i], where, with
a slight abuse of notation, the same symbol is used for a realization of the F i0-measurable random
variable %i. Except these points, we will use the same setup and notation given in Section 2.1. In
particular, we impose the finite state space condition only on (Sn) and (Yn). Now, let us update
Assumption 2.1 for this section.

Assumption 3.1. (i): ũ and d̃ are real constants satisfying

0 < d̃ < exp(r∆) < ũ <∞.

(ii): Every (ξi, γi, ζi, ψi, δi, (Z
i
n)Nn=0) is identically distributed across all agents i = 1, 2, . . ..

(iii): There exist real constants ξ, ξ, γ, γ, ζ, ζ, ψ,ψ and δ, δ so that for every i ∈ N,

ξi ∈ [ξ, ξ] ⊂ R,
%i := (γi, ζi, ψi, δi) ∈ Γ := [γ, γ]× [ζ, ζ]× [ψ,ψ]× [δ, δ] ⊂ (0,∞)4.

(iv): For every 0 ≤ n ≤ N , Zn is a bounded subset of RdZ .
(v): For each i, (Zin)Nn=0 is a Markov process i.e. Ei[f(Zin)|F itk ] = Ei[f(Zin)|Zik] for every bounded
measurable function f on Zn and k ≤ n.
(vi): (Yn)Nn=0 is a Markov process i.e. E0[f(Yn)|F0

tk
] = E0[f(Yn)|Yk] for every bounded measurable

function f on Yn and k ≤ n.
(vii): The transition probabilities of (Sn)Nn=0 satisfy, for every 0 ≤ n ≤ N − 1,

P0(Sn+1 = ũSn|F0
tn) = P0(Sn+1 = ũSn|Sn, Yn) =: pn(Sn, Yn),

P0(Sn+1 = d̃Sn|F0
tn) = P0(Sn+1 = d̃Sn|Sn, Yn) =: qn(Sn, Yn),

where pn, qn (= 1− pn) : Sn×Yn → R, 0 ≤ n ≤ N − 1 are bounded measurable functions satisfying

0 < pn(s, y), qn(s, y) < 1

for every (s, y) ∈ Sn × Yn.

Under the above assumptions, we have, instead of (2.1), the relation

E0
[
f(Sn+1)g(Yn+1)|F0

tn ] = E0[f(Sn+1)|Sn, Yn]E0[g(Yn+1)|Yn], 0 ≤ n ≤ N − 1, (3.1)

for any bounded measurable functions f : Sn+1 → R and g : Yn+1 → R.

Remark 3.1. As in the last section, the condition 0 < pn(s, y), qn(s, y) < 1, ∀(s, y) ∈ Sn×Yn, 0 ≤
n ≤ N − 1 guarantees the equivalence of P0 ◦ S−1

n and Q ◦ S−1
n . Hence the system is arbitrage free.
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3.2 The individual optimization problem

In this section, as previously mentioned, we assume that each agent-i engages in self-financing
trading using the money-market account and the risky stock, while also spending some cash at the
beginning of each period. Moreover, they receive a stochastic endowment at each time tn, 1 ≤ n ≤
N . Thus the wealth of the agent-i, (Xi

n := Xi(tn))Nn=0, follows the dynamics:

Xi
n+1 = exp(r∆)(Xi

n − cin∆− φin) + φinR̃n+1 + gn+1(Sn+1, Yn+1, Z
i
n+1)

= β(Xi
n − cin∆) + φinRn+1 + gn+1(Sn+1, Yn+1, Z

i
n+1),

(3.2)

where Xi
0 = ξi. Recall that Rn := R̃n−exp(r∆). Here, cin, 0 ≤ n ≤ N−1 denotes the cash spending

at tn. For the scaling purposes in the discrete-time model, this value is defined such that the actual
cash used is cin∆. gn(Sn, Yn, Z

i
n), 1 ≤ n ≤ N is the stochastic endowment (i.e., income originating

from the agent’s other business lines) paid at tn, which is dependent on the stock-price trajectory
Sn in addition to the common and the idiosyncratic shocks (Yn, Z

i
n). Since we do not restrict gn to

be positive, it can also represent incremental liability incurred at tn when negative. As discussed
in Remark 2.3 concerning the terminal liability, the ability of our framework to incorporate such a
term is crucial for developing realistic models of financial firms.

We suppose that the (F0,i
tn )Nn=0-adapted process of utilities (U in)Nn=0 is defined recursively by

U in := − 1

ζi
log
{

exp
(
−ζicin

)
∆ + δi exp

(ψi
γi

log
(
E0,i[e−γiU

i
n+1 |F0,i

tn ]
))}

,

↔ exp(−ζiU in) = exp(−ζicin)∆ + δi exp
(ψi
γi

log
(
E0,i[e−γiU

i
n+1 |F0,i

tn ]
))
,

(3.3)

with the terminal condition
U iN := Xi

N − F (SN , YN , Z
i
N ).

Here, F (SN , YN , Z
i
N ) denotes the terminal liability as in the last section, but now dependent on

the price trajectory SN . Each agent-i is supposed to solve the optimization problem

sup
(φin,c

i
n)N−1
n=0 ∈Ai

U i0, (3.4)

over the admissible space defined by

Ai :=
{

(φin, c
i
n)N−1
n=0 : (φin, c

i
n) is an F0,i

n -measurable R2-valued random variable
}
.

For simplicity, we do not restrict (cin) to non-negative values. One may interpret negative spending
as positive income from costly labor for the corresponding period.

Assumption 3.2. (i): The function F : SN × YN ×ZN → R is measurable and bounded.
(ii): For every 1 ≤ n ≤ N , the function gn : Sn × Yn ×Zn → R is measurable and bounded.
(iii): Every agent is a price-taker in the sense that they consider the stock price process (and hence
its transition probabilities specified in Assumption 3.1 (vii)) to be exogenously given by the collective
actions of the others and unaffected by the agent’s own trading strategies.
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Before going into the details, let us consider the special case: ζi = γi = ψi. Then we have

exp(−ζiU in) = exp(−ζicin)∆ + δiE0,i[exp(−ζiU in+1)|F0,i
tn ]

= exp(−ζicin)∆ + E0,i
[
δi exp(−ζicin+1)∆|F0,i

tn

]
+ δ2

i E0,i[exp(−ζiU in+2)|F0,i
tn ]

= · · · = exp(−ζicin)∆ + E0,i
[ N−1∑
k=n+1

δk−ni exp(−ζicik)∆ + δN−ni exp(−ζiU iN )|F0,i
tn

]
,

which thus corresponds to the standard time-separable utility over nominal consumptions with the
terminal liability F . One can see that the parameter ψi determines the relative importance of
the continuation utility. We now derive the optimal strategy for each agent with respect to the
above-defined recursive utility.

Theorem 3.1. Let Assumptions 3.1 and 3.2 be in force. Then the problem (3.4) has a unique
optimal solution (φi,∗n−1, c

i,∗
n−1)Nn=1, where (φi,∗n−1)Nn=1 and (ci,∗n−1)Nn=1 are a.s. bounded processes defined

by measurable functions φi,∗n−1 : Sn−1×Yn−1×Zn−1×Γ→ R and ci,∗n−1 : R×Sn−1×Yn−1×Zn−1×
Γ→ R such that φi,∗n−1 := φi,∗n−1(Sn−1, Yn−1, Z

i
n−1, %i) and ci,∗n−1 := ci,∗n−1(Xi

n−1,S
n−1, Yn−1, Z

i
n−1, %i)

respectively, where, for each (xi, s, y, zi, %i) ∈ R× Sn−1 × Yn−1 ×Zn−1 × Γ,

φi,∗n−1(s, y, zi, %i) :=
1

γiηin(u− d)

{
log
(
−pn−1(s, y)u

qn−1(s, y)d

)
+ log

(
fn−1(s, y, zi, %i)

)}
, (3.5)

ci,∗n−1(xi, s, y, zi, %i) :=
ψiη

i
nβ

ζi + ∆ψiηinβ
xi − 1

ζi + ∆ψiηinβ
log
{δiψiηinβ

ζi
exp
(ψi
γi

log Ṽn−1(s, y, zi, %i)
)}
.

(3.6)

Here, fn−1 : Sn−1 ×Yn−1 ×Zn−1 × Γ→ R is an a.s. strictly positive bounded measurable function:

fn−1(s, y, zi, %i) :=
E0,i
[
exp
(
γi[Vn((sũ)n, Yn, Z

i
n, %i)− ηingn((sũ)n, Yn, Z

i
n)]
)
|y, zi, %i

]
E0,i
[
exp
(
γi[Vn((sd̃)n, Yn, Zin, %i)− ηingn((sd̃)n, Yn, Zin)]

)
|y, zi, %i

] , (3.7)

and Vn : Sn × Yn ×Zn × Γ→ R is an a.s. bounded measurable function defined recursively by

Vn−1(s, y, zi, %i) :=
ηin−1

ηinγiβ
log Ṽn−1(s, y, zi, %i) +

1

ζi + ∆ψiηinβ
log
(δiψiηinβ

ζi

)
− 1

ζi
log(ηin−1), (3.8)

with

Ṽn−1(s, y, zi, %i)

:= pn−1(s, y)e−γiη
i
nφ

i,∗
n−1uE0,i

[
exp(γi[Vn((sũ)n, Yn, Z

i
n, %i)− ηingn((sũ)n, Yn, Z

i
n)])|y, zi, %i

]
+ qn−1(s, y)e−γiη

i
nφ

i,∗
n−1dE0,i

[
exp(γi[Vn((sd̃)n, Yn, Z

i
n, %i)− ηingn((sd̃)n, Yn, Z

i
n)])|y, zi, %i

]
,

(3.9)

starting from the terminal condition VN (SN , YN , Z
i
N , %i) := F (SN , YN , Z

i
N ). (ηin)Nn=0 are strictly

positive and bounded F i0-measurable random variables given by the recursive relation:

ηin−1 :=
ψiη

i
nβ

ζi + ∆ψiηinβ
, ηiN ≡ 1. (3.10)
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Similar to Theorem 2.1, Vn can be interpreted as the continuation value of liability at tn.

Proof. We first hypothesize that the utility U in at t = tn is given by the following form:

U in(Xi
n,S

n, Yn, Z
i
n, %i) = ηinX

i
n − Vn(Sn, Yn, Z

i
n, %i),

where Vn : Sn × Yn ×Zn × Γ→ R is a measurable a.s. bounded function and ηin is F i0-measurable
strictly positive and bounded random variable. The hypothesis obviously holds at the terminal
point with VN (SN , YN , Z

i
N , %i) = F (SN , YN , Z

i
N ) and ηiN ≡ 1. We shall show by induction that

our hypothesis holds in every period. Under the hypothesis, the problem for the agent-i at tn−1

becomes to find F0,i
n−1-measurable strategy (φi, ci) that solves

inf
(φi,ci)

{
exp(−ζici)∆ + δi exp

(ψi
γi

log
(
E0,i
[
exp(−γiU in(Xi

n,S
n, Yn, Z

i
n, %i))|F

0,i
n−1

]))}
. (3.11)

We consider the problem on the set {ω0,i ∈ Ω0,i : (Xi
n−1,S

n−1, Yn−1, Z
i
n−1, %i) = (xi, s, y, zi, %i)}.

By Assumption 3.1 (vii), (3.1), and the above hypothesis, we have

E0,i
[
exp
(
−γiU in(Xi

n,S
n, Yn, Z

i
n, %i)

)
|xi, s, yi, zi, %i

]
= E0,i

[
exp
(
−γiηin

(
β(xi − ci∆) + φiRn + gn(Sn, Yn, Z

i
n)
)

+ γiVn(Sn, Yn, Z
i
n, %i)

)
|s, y, zi, %i

]
= e−γiη

i
nβ(xi−ci∆)

{
pn−1(s, y)e−γiη

i
nφ

iuE0,i
[
exp(γi[Vn((sũ)n, Yn, Z

i
n, %i)− ηingn((sũ)n, Yn, Z

i
n)])|y, zi, %i

]
+ qn−1(s, y)e−γiη

i
nφ

idE0,i
[
exp(γi[Vn((sd̃)n, Yn, Z

i
n, %i)− ηingn((sd̃)n, Yn, Z

i
n)])|y, zi, %i

]}
.

Thus the problem (3.11) can be restated as

inf
(φi,ci)

{
exp(−ζici)∆ + δi exp(−ψiηinβ(xi − ci∆))

× exp
(ψi
γi

log
{
pn−1(s, y)e−γiη

i
nφ

iuE0,i
[
exp(γi[Vn((sũ)n, Yn, Z

i
n, %i)− ηingn((sũ)n, Yn, Z

i
n)])|y, zi, %i

]
+ qn−1(s, y)e−γiη

i
nφ

idE0,i
[
exp(γi[Vn((sd̃)n, Yn, Z

i
n, %i)− ηingn((sd̃)n, Yn, Z

i
n)])|y, zi, %i

]})}
.

The optimization over (φi, ci) can now be solved separately. Since d < 0 < u, the optimal φi,∗

is characterized uniquely by

0 = pn−1(s, y)ue−γiη
i
nφ

iuE0,i
[
exp(γi[Vn((sũ)n, Yn, Z

i
n, %i)− ηingn((sũ)n, Yn, Z

i
n)])|y, zi, %i

]
+ qn−1(s, y)de−γiη

i
nφ

idE0,i
[
exp(γi[Vn((sd̃)n, Yn, Z

i
n, %i)− ηingn((sd̃)n, Yn, Z

i
n)])|y, zi, %i

]
,

which gives the desired solution (3.5) for φi,∗n−1 with fn−1 defined as in (3.7). Thanks to the
boundedness of gn and our hypothesis on Vn, fn−1 is proved to be an a.s. strictly positive and
bounded function on Sn−1×Yn−1×Zn−1×Γ. Combined with the assumption on (pn−1, qn−1) and
our hypothesis on ηin, φi,∗n−1 is also a.s. bounded on Sn−1 × Yn−1 ×Zn−1 × Γ.
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With Ṽn−1 defined as in (3.9), the optimization with respect to ci reduces to

inf
ci

{
exp(−ζici)∆ + δi exp

(
−ψiηinβ(xi − ci∆)

)
exp
(ψi
γi

log Ṽn−1(s, y, zi, %i)
)}
.

Thus the optimal solution is characterized by the equation:

0 = −ζi exp(−ζici) + δiψiη
i
nβ exp

(
−ψiηinβ(xi − ci∆)

)
exp
(ψi
γi

log Ṽn−1(s, y, zi, %i)
)
, (3.12)

which gives the unique solution ci,∗n−1 in (3.6) as desired. Note that it is a.s. bounded if the wealth
xi at tn−1 is bounded. Therefore, once our induction is complete, the spending process is shown to
be a.s. bounded since ξi takes values in a bounded interval [ξ, ξ].

In order to complete the induction argument, we need to obtain the utility U in−1 for the next
period. By (3.3), it satisfies

exp(−ζiU in−1) = exp(−ζici,∗n−1)∆ + δi exp
(
−ψiηinβ(xi − ci,∗n−1∆)

)
exp
(ψi
γi

log Ṽn−1(s, y, zi, %i)
)
.

The right-hand side of the above equality can be evaluated by using (3.12) as

exp(−ζici,∗n−1)∆ +
1

ψiηinβ
ζi exp(−ζici,∗n−1) =

ζi + ∆ψiη
i
nβ

ψiηinβ
exp(−ζici,∗n−1)

=
ζi + ∆ψiη

i
nβ

ψiηinβ
exp
{
− ζiψiη

i
nβ

ζi + ∆ψiηinβ
xi +

ζi
ζi + ∆ψiηinβ

log
[δiψiηinβ

ζi
exp
(ψi
γi

log Ṽn−1(s, y, zi, %i)
)]}

.

It follows that the utility U in−1 is given by

U in−1(xi, s, y, zi, %i) =
ψiη

i
nβ

ζi + ∆ψiηinβ
xi − 1

ζi + ∆ψiηinβ
log
{δiψiηinβ

ζi
exp
(ψi
γi

log Ṽn−1(s, y, zi, %i)
)}

− 1

ζi
log
(ζi + ∆ψiη

i
nβ

ψiηinβ

)
.

on the set {ω0,i ∈ Ω0,i : (Xi
n−1,S

n−1, Yn−1, Z
i
n−1, %i) = (xi, s, y, zi, %i)}. By setting the right-hand

side equal to ηin−1x
i − Vn−1(s, y, zi, %i), we obtained the desired recursive relation for ηin and Vn.

It is now clear that (ηin)Nn=1 are F i0-measurable, strictly positive and bounded, and that Vn is a
bounded function on Sn × Yn ×Zn × Γ→ R for every 0 ≤ n ≤ N .

Remark 3.2 (On time inconsistency). It is well known that the optimization problem for utili-
ties becomes, in general, time-inconsistent if the associated coefficients are time-dependent, such
as (γi(t), ζi(t), δi(t), ψi(t)). However, even in this case, the solution (φi,∗n , c

i,∗
n )N−1

n=0 produces the
sub-game perfect Nash equilibrium (SPNE), provided it is derived via backward induction, as we
have done in this section. If we suppose that there exists an independent agent responsible for the
optimization in each interval [tn, tn+1], and they do not commit to past decisions made by other
agents and believes future agents act similarly, then the backward induction solution (φi,∗n , c

i,∗
n )N−1

n=0

yields a Nash equilibrium among them. This is an important characteristic of any games defined
on trees over finite intervals. Considering most of the financial firms revise their risk and bud-
getary targets periodically, the concept of SPNE fits well the real situation. Therefore, even if we
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deal with time-inconsistent problem with time-dependent coefficients (γi(t), ζi(t), δi(t), ψi(t)), our
scheme still provides a meaningful result. This is an additional advantage of adopting the binomial
tree approach, which sidesteps the complexities often encountered in continuous-time settings. Un-
fortunately, however, if the coefficients follow general stochastic processes not measurable by F i0,
explicit solvability would be lost.

3.3 Mean-field equilibrium among the agents with recursive utilities

Finally, as a main goal of this section, we shall derive a set of transition probabilities of the stock
price so that the mean-field equilibrium holds among the agents with recursive utilities. As before,
we incorporate the existence of stochastic external order flow Ln at each tn, but it is now allowed
to be path-dependent on the stock price:

Assumption 3.3. For every 1 ≤ n ≤ N , Ln−1 : Sn−1 × Yn−1 → R is a bounded measurable
function.

Definition 3.1. We say that the system is in the mean-field equilibrium if

lim
Np→∞

1

Np

Np∑
i=1

φi,∗n−1(Sn−1, Yn−1, Z
i
n−1, %i) = Ln−1(Sn−1, Yn−1),

P-a.s. for every 1 ≤ n ≤ N with φi,∗n−1 defined by (3.5).

Since (Zi, %i), i ∈ N are independent, identically distributed, and also independent of the process
(S, Y ), the above condition for the mean-field equilibrium can be represented by

E1
[
φ1,∗
n−1(s, y, Z1

n−1, %1)
]

= Ln−1(s, y) (3.13)

for every (s, y) ∈ Sn−1 × Yn−1, 1 ≤ n ≤ N . It is now straightforward to derive the counterpart of
Theorem 2.2.

Theorem 3.2. Let Assumptions 3.1, 3.2 and 3.3 be in force. Then there exists a unique mean-field
equilibrium and the associated transition probabilities of the stock price are given by

pn−1(s, y) := P0
(
Sn = ũSn−1|(Sn−1, Yn−1) = (s, y)

)
= (−d)

/{
u exp

( 1

E1[1/(γ1η1
n)]

[
E1
( log(fn−1(s, y, Z1

n−1, %1))

γ1η1
n

)
− (u− d)Ln−1(s, y)

])
− d
}

for every (s, y) ∈ Sn−1 × Yn−1, 1 ≤ n ≤ N . Under the above transition probabilities, the optimal
strategy of agent-i is given by

φi,∗n−1(s, y, zi, %i) =
1

(u− d)

{ log fn−1(s, y, zi, %i)

γiηin
− 1/(γiη

i
n)

E1[1/(γ1η1
n)]

E1
( log fn−1(s, y, Z1

n−1, %1)

γ1η1
n

)}
+

1/(γiη
i
n)

E1[1/(γ1η1
n)]
Ln−1(s, y).

(3.14)
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Moreover, there exists some positive constant Cn−1 such that

E
∣∣∣ 1

Np

Np∑
i=1

φi,∗n−1(Sn−1, Yn−1, Z
i
n−1, %i)− Ln−1(Sn−1, Yn−1)

∣∣∣2 ≤ Cn−1

Np

for every 1 ≤ n ≤ N , which gives the convergence rate in the large population limit.

Proof. The expression for the transition probabilities pn−1(s, y) is a direct consequence of (3.5) and
(3.13). By substituting this expression for pn−1(s, y) (and qn−1(s, y)) into (3.5), we obtain (3.14).
The rest of the proof is analogous to that of Theorem 2.2. Assumptions 3.2 and 3.3 guarantees
that fN−1 is a.s. strictly positive and bounded and hence the condition (vii) in Assumption 3.1 is
satisfied for (pN−1, qN−1). It then makes φi,∗N−1 a.s. bounded and thus ṼN−1 becomes a.s. strictly
positive and bounded. It then follows that VN−1 and hence fN−2 are a.s. bounded functions, which
shows that (pN−2, qN−2) satisfies the condition (vii). In this way, a simple induction shows that
the transition probabilities satisfy Assumption 3.1 (vii) for every period. The second claim can be
proved from (3.14) and the fact that all the relevant components are bounded.

Remark 3.3. The path-dependent extension for the model in Section 2, which replaces F (SN , YN , Z
i
N )

and (Ln−1(Sn−1, Yn−1))Nn=1 with the path-dependent forms F (SN , YN , Z
i
N ) and (Ln−1(Sn−1, Yn−1))Nn=1,

can be done in exactly the same way. Specifically, the corresponding results are obtained by substi-
tuting the path-dependent states (s, (sũ)n, (sd̃)n) ∈ Sn−1×Sn×Sn for one-time states (s, sũ, sd̃) ∈
Sn−1 × Sn × Sn in the statements of Theorems 2.1 and 2.2.

More generally, it is not difficult to confirm that the path dependence horizon required for the
transition probabilities matches that for the liability and the incremental endowments. In particular,
if F and gn in the current recursive utility model depend only on SN and Sn respectively, as in
Section 2, then the mean-field equilibrium is achieved using transition probabilities of the form
(pn−1(s, y), qn−1(s, y)) with s ∈ Sn−1; by simply replacing s ∈ Sn−1 with s ∈ Sn−1, we obtain the
corresponding results for Theorems 3.1 and 3.2.

3.4 Some implications

Let us discuss some implications of the results in this section for the recursive utility. The key
advantage of the explicit dependence of the transition probabilities (pn−1(s, y)) on the macroeco-
nomic factor Y still holds in the current case. Regarding the relation between the mean-field price
distribution and the one in the risk-neutral measure, most of the discussions given in Section 2.4
still hold. Indeed, the situation pn−1(s, y) > pQ (i.e., a positive excess return at the node (s, y))
occurs if and only if

E1
[
log fn−1(s, y, Z1

n−1, %1)/(γ1η
1
n)
]
< 0,

when there is no external order flow Ln−1 ≡ 0.
As one can see from (3.7), fn−1 now receives contributions from the incremental endowment

gn in addition to the liability Vn. For example, although the investment funds typically do not
have substantial liabilities, their endowments (fees from their customers) are naturally expected to
grow as the stock price goes higher, since these fees are generally proportional to the Assets Under
Management (AUM), which pushes the required excess return to higher values. If the liability size
decreases and the endowment size simultaneously increases as the stock price grows, both effects
will amplify the deviations from the risk-neutral distribution, leading to a higher excess return.
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Since the equilibrium price distribution of the stock is determined by the need for risk hedging,
the relative importance of the continuation utility with respect to the current nominal consumption
is a crucial factor in controlling the size of the risk premium. From the expressions in (3.8) and
(3.9), one can expect that the ratio

ηin−1/η
i
n

is the key value. Using β ' 1 and ∆ � 1, we have ηin−1/η
i
n ' ψi/ζi from (3.10). Therefore, if

ψi < ζi holds for the majority of agents, we expect that the relative importance of the continuation
utility quickly decays and we would see only a small impact from it in the earlier periods. In
this case, significant deviations from the risk-neutral price distribution can be observed only in
the later periods, near the maturity. On the other hand, in the case of ψi ≥ ζi, we can expect
to see significant deviations throughout the interval. We shall confirm this behavior by numerical
examples in Section 6.

As for the expected trading volume E[|φ1,∗
n |2]

1
2 , which gives the standard deviation of the stock

position among the agents at t = tn, the result is consistent with that in Section 2.4. The expression
for φi,∗n−1 in (3.14) shows that its size is governed by the variation of idiosyncratic factors defined on
the space (Ωi,F i,Pi). It is also quite consistent with our intuition that the agents’ heterogeneity
in idiosyncratic factors is the origin of the trading activity in the market. Moreover, we can make
use of the degrees of freedom in the process (Zin), in particular its volatility, to obtain the desired
trading volume. We shall demonstrate this property by numerical examples in Section 6.2.

Finally, we comment on the fact that the constant shifts in F and gn, i.e. F 7→ F + c and
gn 7→ gn + c′ with some constants c, c′ ∈ R do not affect the equilibrium price distribution. This
property can be checked by a simple induction as follows: By (3.7), the value of fN−1 remains
unchanged and so are pN−1(s, y) and φi,∗N−1; the value of ṼN−1 is changed only by an F i0-measurable
multiplicative factor; the value of VN−1 is simply shifted by an F i0-measurable term; thus fN−2

remains once again unchanged, and so are pN−2(s, y) and φi,∗N−2, and so on. Therefore, the signs
of F and gn can be altered without affecting the equilibrium price distribution. Note however that
the cash spending is affected by these shifts.

4 Mean-field equilibrium of multiple populations

A primary drawback of the previous frameworks lies in their restriction to a single homogeneous
population, where all agents share identical functional forms for terminal liabilities F and in-
cremental endowments (gn)Nn=1. That is, their heterogeneity is limited to the realizations of the
idiosyncratic factor process Zi. Beyond this structural constraint, risk aversion coefficients and
time preferences are expected to have substantially different distributions across diverse financial
entities, such as investment banks, commercial banks, insurance firms, pension, and other invest-
ment funds. To address this fundamental market heterogeneity, we propose a multi-population
extension of the mean-field equilibrium studied in the preceding sections.

Let us consider the case where there are m ∈ N populations. For simplicity, we assume that
all the agents have recursive utilities of exponential-type as in Section 3. We adopt the same
model setup and notation as given in Sections 2.1 and 3.1, in particular those for (Sn)Nn=0 and
(Yn)Nn=0. However to incorporate the heterogeneity across the m populations, we need to introduce
population-specific probability spaces for the idiosyncratic factors. We now introduce a countably
infinite number of complete filtered probability spaces (Ωi,p,F i,p, (F i,ptn )Nn=0,Pi,p), i ∈ N for each
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population p, p = 1, . . . ,m. We introduce (ξpi , γ
p
i , ζ

p
i , ψ

p
i , δ

p
i ) as F i,p0 -measurable R-valued random

variables and (Zi,pn = Zi,p(tn))Nn=0 as (F i,ptn )Nn=0-adapted dZ-dimensional stochastic process. Since m
is finite, we can take dZ to be the same for every population by using a sufficiently large integer. As
before, we denote the support of the random variable Zi,pn by Zpn and define Zn,p := Zp0×Z

p
1×· · ·×Z

p
n

as the support of (Zi,pk )nk=0. Importantly, while these variables are assumed to be i.i.d. copies within
each population p, their distributions can vary across the populations.

With the same probability space (Ω0,F0, (F0
tn)Nn=0,P0) as in Section 2.1, we define

(Ω,F , (Ftn)Nn=0,P) := (Ω0,F0, (F0
tn)Nn=0,P0)⊗mp=1 ⊗∞i=1(Ωi,p,F i,p, (F i,ptn )Nn=0,Pi,p)

as the full probability space containing the entire environment of the m-population model. For
agent-i in the population p (it will be denoted by agent-(i, p) hereafter), the relevant probability
space is given by

(Ω0,(i,p),F0,(i,p), (F0,(i,p)
tn )Nn=0,P0,(i,p)) := (Ω0,F0, (F0

tn)Nn=0,P0)⊗ (Ωi,p,F i,p, (F i,ptn )Nn=0,Pi,p).

Expectations with respect to Pi,p and P0,(i,p) are denoted by Ei,p[·] and E0,(i,p)[·], respectively. We
assume the following for the multi-population model:

Assumption 4.1. (i): ũ and d̃ are real constants satisfying 0 < d̃ < exp(r∆) < ũ <∞
(ii): Every (ξpi , γ

p
i , ζ

p
i , ψ

p
i , δ

p
i , (Z

i,p
n )Nn=0) is identically distributed across all agents i = 1, 2, . . . within

each population 1 ≤ p ≤ m.
(iii): There exist real constants ξ, ξ, γ, γ, ζ, ζ, ψ,ψ and δ, δ so that for every 1 ≤ p ≤ m, i ∈ N,

ξpi ∈ [ξ, ξ] ⊂ R,
%pi := (γpi , ζ

p
i , ψ

p
i , δ

p
i ) ∈ Γ := [γ, γ]× [ζ, ζ]× [ψ,ψ]× [δ, δ] ⊂ (0,∞)4.

(iv): For every 1 ≤ p ≤ m and 0 ≤ n ≤ N , Zpn is a bounded subset of RdZ .
(v): For each (i, p), (Zi,pn )Nn=0 is a Markov process i.e., Ei,p[f(Zi,pn )|F i,ptk ] = Ei,p[f(Zi,pn )|Zi,pk ] for
every bounded measurable function f on Zpn and k ≤ n.
(vi): (Yn)Nn=0 is a Markov process i.e., E0[f(Yn)|F0

tk
] = E0[f(Yn)|Yk] for every bounded measurable

function f on Yn and k ≤ n.
(vii): The transition probabilities of (Sn)Nn=0 satisfy, for every 0 ≤ n ≤ N − 1,

P0(Sn+1 = ũSn|F0
tn) = P0(Sn+1 = ũSn|Sn, Yn) =: pn(Sn, Yn),

P0(Sn+1 = d̃Sn|F0
tn) = P0(Sn+1 = d̃Sn|Sn, Yn) =: qn(Sn, Yn),

where pn, qn (= 1− pn) : Sn×Yn → R, 0 ≤ n ≤ N − 1 are bounded measurable functions satisfying

0 < pn(s, y), qn(s, y) < 1

for every (s, y) ∈ Sn × Yn.

We also introduce the terminal liabilities F p and the incremental endowments (gpn)Nn=1, which
may have different functional forms across the populations p = 1, . . . ,m to capture the diversity of
financial entities.
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Assumption 4.2. For each 1 ≤ p ≤ m,
(i): the function F p : SN × YN ×ZpN → R is measurable and bounded.
(ii): for every 1 ≤ n ≤ N , the function gpn : Sn × Yn ×Zpn → R is measurable and bounded.
(iii): every agent is a price-taker in the sense that they consider the stock price process (and hence
its transition probabilities specified in Assumption 4.1 (vii)) to be exogenously given by the collective
actions of the others and unaffected by the agent’s own trading strategies.

We suppose that each agent-(i, p) solves the optimization problem

sup
(φi,pn ,ci,pn )N−1

n=0 ∈Ai,p
U i,p0 ,

over the admissible space defined by

Ai,p :=
{

(φi,pn , c
i,p
n )N−1

n=0 : (φin, c
i
n) is an F0,(i,p)

n -measurable R2-valued random variable
}
.

The (F0,(i,p)
tn )Nn=0-adapted process of the recursive utilities (U i,pn )Nn=0 is defined by

U i,pn := − 1

ζpi
log
{

exp(−ζpi c
i,p
n )∆ + δpi exp

(ψpi
γpi

log
(
E0,(i,p)[e−γ

p
i U

i,p
n+1 |F0,(i,p)

tn ]
))}

with the terminal condition
U i,pN := Xi,p

N − F
p(SN , YN , Z

i,p
N ).

Here, (Xi,p
n )Nn=0 denotes the wealth process of agent-(i, p) which follows

Xi,p
n+1 = β(Xi,p

n − ci,pn ∆) + φi,pn Rn+1 + gpn+1(Sn+1, Yn+1, Z
i,p
n+1),

where Xi,p
0 = ξpi . The interpretations of the coefficients are the same as Section 3.

Under Assumptions 4.1 and 4.2, a direct application of Theorem 3.1 for each population
p = 1, . . . ,m provides the optimal solution (φi,p,∗n−1, c

i,p,∗
n−1)Nn=1. In particular, we have φi,p,∗n−1 :=

φi,p,∗n−1(Sn−1, Yn−1, Z
i,p
n−1, %

p
i ), where for each (s, y, zi,p, %pi ) ∈ Sn−1 × Yn−1 ×Zpn−1 × Γ,

φi,p,∗n−1(s, y, zi,p, %pi ) :=
1

γpi η
i,p
n (u− d)

{
log
(
−pn−1(s, y)u

qn−1(s, y)d

)
+ log

(
fpn−1(s, y, zi,p, %pi )

)}
. (4.1)

Here, fpn−1 is given by (3.7) by replacing F with F p and gn with gpn in its recursive definition.

Similarly, ηi,pn is given by (3.10) with ψi → ψpi and ζi → ζpi .
We now consider the large population limit and the associated market-clearing condition. As

discussed in [19, 16], we need to keep track of the ratio of population size. Let us denote the number
of agents in population p by Np and set N := N1 + · · ·+Nm. We use wp := Np/N to denote the
relative size of population p. We obviously have the following decomposition:

1

N

m∑
p=1

Np∑
i=1

φi,p,∗n−1 =
m∑
p=1

wp

( 1

Np

Np∑
i=1

φi,p,∗n−1

)
. (4.2)

We thus consider the limit N →∞ while keeping wp, 1 ≤ p ≤ m constant, and then introduce the
following concept of mean-field equilibrium in the presence of an external order flow:
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Definition 4.1. We say that the system is in the mean-field equilibrium if

lim
N→∞

1

N

m∑
p=1

Np∑
i=1

φi,p,∗n−1(Sn−1, Yn−1, Z
i,p
n−1, %

p
i ) = Ln−1(Sn−1, Yn−1),

P-a.s. for every 1 ≤ n ≤ N with φi,p,∗n−1 defined by (4.1), where the large population limit is taken
with the population ratios (wp)

m
p=1 kept constant.

We can now derive the equilibrium transition probabilities among the m populations.

Theorem 4.1. Let Assumptions 4.1, 4.2 and 3.3 be in force. Then there exists a unique mean-field
equilibrium and the associated transition probabilities of the stock price are given by

pn−1(s, y) := P0
(
Sn = ũSn−1|(Sn−1, Yn−1) = (s, y)

)
= (−d)

/u exp


∑m

p=1wpE1,p
[

log(fpn−1(s,y,Z1,p
n−1,%

p
1))

γp1η
1,p
n

]
− (u− d)Ln−1(s, y)∑m

p=1wpE1,p
[
1/(γp1η

1,p
n )
]

− d


for every (s, y) ∈ Sn−1×Yn−1, 1 ≤ n ≤ N . Moreover, with the above transition probabilities, there
exists some positive constant Cn−1 such that

E
∣∣∣ 1

N

m∑
p=1

Np∑
i=1

φi,p,∗n−1(Sn−1, Yn−1, Z
i,p
n−1, %

p
i )− Ln−1(Sn−1, Yn−1)

∣∣∣2 ≤ Cn−1

N

for every 1 ≤ n ≤ N , which gives the convergence rate in the large population limit.

Proof. By the i.i.d. property within each population and the decomposition (4.2), the condition for
the mean-field equilibrium given by Definition 4.1 can be rewritten as

m∑
p=1

wpE1,p
[
φ1,p,∗
n−1 (s, y, Z1,p

n−1, %
p
1)
]

= Ln−1(s, y) (4.3)

for every (s, y) ∈ Sn−1 ×Yn−1, 1 ≤ n ≤ N . Using (4.1), the proof can be done exactly in the same
way as in Theorems 2.2 and 3.2.

As discussed in Remark 3.3, if we turn off the path-dependence in F p and (gpn), then the simpler
form of transition probabilities, (pn−1(s, y), qn−1(s, y)), (s, y) ∈ Sn−1 × Yn−1, is sufficient to clear
the market. In this case, at least, numerical costs would not be so high and one can calculate
the equilibrium price distribution in the same way as the next Section 6. We can even mix the
populations with standard exponential utilities and the recursive utilities in a similar manner.

It should be noted that the analytical tractability achieved in this section is quite remarkable
when compared with the situation in continuous-time settings. In fact, attempting to solve the
corresponding problem in the formulation of Fujii & Sekine [17] would lead to a coupled system of
mean-field qg-BSDEs. Also in the optimal storage-type modeling adopted in many of the existing
literature such as [19, 37, 40], the multi-population extension would produce a coupled system
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of FBSDEs of McKean-Vlasov type. The well-posedness of these equations is substantially more
challenging than in the single population case, to say nothing of its numerical evaluation.

5 Subjective Measures: Stochastic Bias and Equilibrium

This section addresses the question of whether every agent must adopt the correct objective proba-
bility measure P0 for the dynamics of the stock price to achieve the market-clearing equilibrium. All
existing literature on MFG implicitly adopts the rational expectation hypothesis, assuming that ev-
ery agent shares correct knowledge of the objective probability distributions governing the relevant
state processes or outcomes. A recent paper by Moll & Ryzhik [36] (2025) studies MFGs without
rational expectations. They show that, in some cases, departing from rational expectations com-
pletely sidesteps the Master equation, allowing for the solution of much simpler finite-dimensional
HJB equations instead.

In the preceding sections, we adopt Assumptions 2.2 (ii), 3.2 (iii), and 4.2 (iii), all of which
assume that every agent-i possesses true knowledge of the stock dynamics by sharing the objec-
tive measure P0. Specifically, they use the objective probability measure P0,i := P0 ⊗ Pi, which
incorporates the correct objective distributions for (S, Y ) and the agents’ idiosyncratic shocks. As
emphasized in [36], it is more natural to suppose that each agent-i adopts a subjective measure,
which is estimated, for example, by a statistical technique or based on a plausible economic model.
Then the resultant dynamics of the stock price under the subjective measure is likely to exhibit a
bias relative to the true dynamics. Moreover, this bias is expected to change stochastically depen-
dent on the agents’ risk characteristics as well as the market environment. The ultimate goal of this
section is to determine the objective transition probability of the stock price under the measure P0

that clears the market among these agents operating under their respective subjective measures.

5.1 The setup and notation

In this section, we directly extend the results in Section 3 to incorporate agents’ subjective measures
on the stock dynamics. We adopt the same setup and notation as in Section 3.1. The key novelty
in this section is captured by the following assumption:

Assumption 5.1. Each agent-i adopts a subjective probability measure P0,i on (Ω0,i,F0,i, (F0,i
tn )Nn=0)

which may differ from the objective measure P0,i. The two measures P0,i and P0,i coincide for the
dynamics of the variables (Y,Zi, ξi, %i) but differ only in the stock dynamics in the following way:

P0,i(Sn+1 = ũSn|F0,i
tn ) = P0,i(Sn+1 = ũSn|Sn, Yn, Zin, %i) =: pn(Sn, Yn, Z

i
n, %i),

P0,i(Sn+1 = d̃Sn|F0,i
tn ) = P0,i(Sn+1 = d̃Sn|Sn, Yn, Zin, %i) =: qn(Sn, Yn, Z

i
n, %i),

where pn and qn = 1 − pn are measurable functions defined on Sn × Yn × Zn × Γ and satisfy, for
each n = 0, . . . , N − 1,

pn(s, y, zi, %i)

qn(s, y, zi, %i)
= $n(s, y, zi, %i)

(pn(s, y)

qn(s, y)

)
,

where pn, qn are the transition probabilities under the objective measure given in Assumption 3.1
(vii) and $n : Sn × Yn × Zn × Γ → R is a measurable function that expresses the agents’ biased
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view on the transition probabilities. There exist some positive constants 0 < $ < $ <∞ such that

$ ≤ $n(s, y, zi, %i) ≤ $

for every (s, y, zi, %i) ∈ Sn × Yn ×Zn × Γ, 0 ≤ n ≤ N − 1.

We denote by E0,i
P [·] the expectation with respect to P0,i. Note that P0,i is equivalent to P0,i due

to the strict positivity and boundedness of ($n)n. This equivalence guarantees that each agent’s
subjective view remains arbitrage-free, which is a fundamental requirement for the well-posedness
and economic consistency of the individual optimization problem.

In this model, the individual bias on the transition probabilities at tn is captured by the function
$n. Specifically, $n > 1 (resp., $n < 1) implies a positive (resp., negative) view on the stock
performance for the period [tn, tn+1], which is conditional on the time tn realizations of the stock
price history, macroeconomic/environmental factors Y , idiosyncratic shocks Zi, as well as the
agent’s risk coefficients. For example, if agent-i is relatively more cautious (resp., optimistic), they
might choose $n < 1 (resp., $n > 1) when the stock price and the macroeconomic factor take
large (i.e., good) values.

5.2 The individual optimization problem

As in Section 3.2, the (F0,i
tn )Nn=0-adapted process of utilities (U in)Nn=0 is recursively defined by

U in := − 1

ζi
log
{

exp(−ζicin)∆ + δi exp
(ψi
γi

log
(
E0,i
P [e−γiU

i
n+1 |F0,i

tn ]
))
, (5.1)

with the terminal condition U iN := Xi
N − F (SN , YN , Z

i
N ). The sole difference from (3.3) is the use

of the expectation E0,i
P [·] with respect to the subjective measure P0,i. The wealth process of agent-i,

(Xi
n)Nn=0, follows the same dynamics as in (3.2), and the agent problem is also given by (3.4) with

the identical admissible space Ai.

Theorem 5.1. Let Assumptions 3.1, 3.2 (i), (ii), and 5.1 be in force. Then the problem (3.4)
with utility defined by (5.1) has a unique optimal solution (φi,∗n−1, c

i,∗
n−1)Nn=1, where (φi,∗n−1)Nn=1 and

(ci,∗n−1)Nn=1 are a.s. bounded processes defined by measurable functions φi,∗n−1 : Sn−1×Yn−1×Zn−1×
Γ→ R and ci,∗n−1 : R× Sn−1 ×Yn−1 ×Zn−1 × Γ→ R such that φi,∗n−1 := φi,∗n−1(Sn−1, Yn−1, Z

i
n−1, %i)

and ci,∗n−1 := ci,∗n−1(Xi
n−1,S

n−1, Yn−1, Z
i
n−1, %i) respectively. Furthermore, all the expressions (3.5)-

(3.10) in Theorem 3.1 hold, provided that the objective transition probabilities (pn−1(s, y), qn−1(s, y))
in (3.5) and (3.9) are replaced by the subjective probabilities (pn−1(s, y, zi, %i), qn−1(s, y, zi, %i)) for
each (s, y, zi, %i) ∈ Sn−1 × Yn−1 ×Zn−1 × Γ.

Proof. The proof of this theorem follows exactly the same arguments as that of Theorem 3.1, with
the sole modification that the objective transition probabilities (pn−1(s, y), qn−1(s, y)) are replaced
by the subjective probabilities (pn−1(s, y, zi, %i), qn−1(s, y, zi, %i)). Note, in particular, that on the
set {ω0,i ∈ Ω0,i : (Xi

n−1,S
n−1, Yn−1, Z

i
n−1, %i) = (xi, s, y, zi, %i)}, we have the following equality:

E0,i
P

[
exp
(
−γiU in(Xi

n,S
n, Yn, Z

i
n, %i)

)
|xi, s, yi, zi, %i

]
= E0,i

P

[
exp
(
−γiηin

(
β(xi − ci∆) + φiRn + gn(Sn, Yn, Z

i
n)
)

+ γiVn(Sn, Yn, Z
i
n, %i)

)
|s, y, zi, %i

] (5.2)
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= exp(−γiηinβ(xi − ci∆))

×
{
pn−1(s, y, zi, %i)e

−γiηinφiuE0,i
[
exp(γi[Vn((sũ)n, Yn, Z

i
n, %i)− ηingn((sũ)n, Yn, Z

i
n)])|y, zi, %i

]
+ qn−1(s, y, zi, %i)e

−γiηinφidE0,i
[
exp(γi[Vn((sd̃)n, Yn, Z

i
n, %i)− ηingn((sd̃)n, Yn, Z

i
n)])|y, zi, %i

]}
.

Here, we have used Assumption 5.1 and the coincidence of E0,i and E0,i
P on σ({Y,Zi, %i}). Using

the strict positivity and boundedness of $n, the remainder of the arguments are identical to those
in the proof of Theorem 3.1.

From Theorem 5.1, we obtain, for each (s, y, zi, %i) ∈ Sn−1 × Yn−1 ×Zn−1 × Γ,

φi,∗n−1(s, y, zi, %i) =
1

γiηin(u− d)

{
log
(
−pn−1(s, y, zi, %i)u

qn−1(s, y, zi, %i)d

)
+ log

(
fn−1(s, y, zi, %i)

)}
,

which is the optimal strategy of agent-i. Using Assumption 5.1, we have

φi,∗n−1(s, y, zi, %i) =
1

γiηin(u− d)

{
log
(
−pn−1(s, y)u

qn−1(s, y)d

)
+ log

(
fπn−1(s, y, zi, %i)

)}
, (5.3)

where fπn−1 : Sn−1 × Yn−1 × Zn−1 × Γ → R is a strictly positive, bounded, measurable function
defined by

fπn−1(s, y, zi, %i) := $n−1(s, y, z, %i)fn−1(s, y, zi, %i). (5.4)

This suggests that the stochastically biased views manifest effectively as a modification to the
continuation liabilities and/or incremental endowments. 3

5.3 Mean-field equilibrium among the agents with subjective measures

As a main goal of this section, we shall now derive a set of transition probabilities (pn−1, qn−1) of
the stock price under the objective measure P0 so that the mean-field equilibrium holds among the
agents operating under respective subjective measures with stochastically biased estimates on the
stock transition probabilities. The mean-field market-clearing condition is defined in Definition 3.1
with (φi,∗n−1) given by Theorem 5.1. This is still characterized by equation (3.13). Using the
expression (5.3), it is straightforward to modify Theorem 3.2 for the current setting:

Theorem 5.2. Let Assumptions 3.1, 3.2 (i), (ii), 3.3 and 5.1 be in force. Then there exists a
unique mean-field equilibrium, and the associated objective transition probabilities of the stock price
are given by

pn−1(s, y) := P0
(
Sn = ũSn−1|(Sn−1, Yn−1) = (s, y)

)
= (−d)

/{
u exp

( 1

E1[1/(γ1η1
n)]

[
E1
( log(fπn−1(s, y, Z1

n−1, %1))

γ1η1
n

)
− (u− d)Ln−1(s, y)

])
− d
} (5.5)

for every (s, y) ∈ Sn−1 × Yn−1, 1 ≤ n ≤ N . Under the above transition probabilities, the optimal

3In addition to the multiplicative factors ($n)n, the subjective transition probabilities (pn, qn)n also change the

values of (Vn, Ṽn)n and hence also of (fn)n through their updates in the recursive formula.
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strategy of agent-i is given by

φi,∗n−1(s, y, zi, %i) =
1

(u− d)

{ log fπn−1(s, y, zi, %i)

γiηin
− 1/(γiη

i
n)

E1[1/(γ1η1
n)]

E1
( log fπn−1(s, y, Z1

n−1, %1)

γ1η1
n

)}
+

1/(γiη
i
n)

E1[1/(γ1η1
n)]
Ln−1(s, y).

Here, fπ is defined by (5.4) and the other variables are as defined in Theorem 5.1. Moreover, there
exists some positive constant Cn−1 such that

E
∣∣∣ 1

Np

Np∑
i=1

φi,∗n−1(Sn−1, Yn−1, Z
i
n−1, %i)− Ln−1(Sn−1, Yn−1)

∣∣∣2 ≤ Cn−1

Np

for every 1 ≤ n ≤ N , which gives the convergence rate in the large population limit.

Proof. The proof of this theorem follows exactly the same arguments as that of Theorem 3.2 by
using (fπn−1) instead of (fn−1). Since ($n) is strictly positive and bounded, every argument for
Theorem 3.2 is still valid.

It is instructive to decompose fπ in the expression (5.5) in the following way:

pn−1(s, y) := P0
(
Sn = ũSn−1|(Sn−1, Yn−1) = (s, y)

)
= (−d)

/{
u exp

(
1

E1[1/(γ1η1
n)]

[
E1
( log fn−1(s, y, Z1

n−1, %1)

γ1η1
n

)
−(u− d)Ln−1(s, y) + E1

( log$n−1(s, y, Z1
n−1, %1)

γ1η1
n

)])
− d
}
.

This result implies that, apart from the subtle effects induced by the changes in fn−1, the aggregated
effect of the biased views on the stock price transition probabilities can also manifest as an external
order flow term Ln−1 in the standard rational expectation setting. Specifically, it is clear that the
negative view ($n−1 < 1) adds to the external supply Ln−1, and the positive one ($n−1 > 1)
does the opposite. Combined with the discussions in Section 2.4, the above result implies that the
existence of a large portion of agents whose bias reflects a counter-cyclical, contrarian view—i.e.,
cautious (pessimistic) view ($n−1 < 1) when the market-wide economic factor and stock price
are at high levels, and, conversely, exhibits an optimistic view ($n−1 > 1) when they are at low
levels—tends to make the equilibrium price distributions more fat-tailed.

Remark 5.1 (Path Dependence and Extension to Multiple Populations). We remark that the
discussions in Remark 3.3 regarding the necessary length of the price trajectory in the transition
probabilities remain valid for the results in this section. Moreover, the framework of multi-population
equilibrium presented in Section 4 can be readily extended to the current model for agents with
subjective measures. Specifically, we only need to replace, for each p = 1, . . . ,m, the set of functions
(fpn) by (fπ,pn ) where fπ,pn = $p

n × fpn with population-specific bias functions ($p
n).
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6 Numerical examples and implications

In this section, we provide some numerical examples for the models introduced in Sections 2 and
3, focusing on cases without path dependence. We also provide an example with stochastically
biased agents developed in Section 5. Since the models are too flexible for a thorough analysis,
we focus only on a few simple setups to illustrate characteristic behaviors of the mean-field price
distributions. In order to reduce numerical cost, we assume that Y and Zi are one-dimensional
discrete processes taking values on binomial trees, and that all F i0-measurable random variables
are uniformly distributed over finite sets.

For our analytical formulation, the finite state space for (S, Y ) has played an important role.
However, there is no requirement for Y to follow a binomial process. Moreover, the coefficients
%i := (γi, ζi, δi, ψi) and the process (Zin) can have continuous distributions. The specific assumptions
made in this section are solely for numerical convenience.

6.1 Utility with terminal liability

We first consider the model discussed in Section 2. γi is assumed to be uniformly distributed over
the (Nγ + 1) discrete values given by

γi(kγ) := γ + (γ − γ)kγ/Nγ , kγ = 0, · · · , Nγ .

The process (Zin)Nn=0 is supposed to follow a one-dimensional binomial process modeled by

Zin+1 = ZinR
i
n+1,

where (Rin) is an (F itn)-adapted process taking values either uz or dz. Specifically, Rin = uz occurs

with probability pz and Rin = dz with qz := 1 − pz. We take uz = (dz)
−1 = exp(σz

√
∆). We also

assume Zi0 = z0 ∈ (0,∞) is common for all the agents in order to reduce numerical costs. We
model the process (Yn)Nn=0 similarly but it is assumed to follow an approximate Gaussian process:

Yn+1 = Yn +Ryn+1,

where (Ryn) is an (F0
tn)-adapted process taking values either uy or dy, where Ryn = uy with proba-

bility py and Ryn = dy with qy := 1− py. We take uy = (−dy) = σy
√

∆. Finally, for the stock-price

process (Sn), we set ũ = (d̃)−1 = exp(σ
√

∆) and S0 = 1.0.
The parameter values to be used throughout this subsection are summarized in Table 1 below.

We recall that the initial wealth ξi is irrelevant for our analysis.

parameter γ γ Nγ z0 σz pz Y0 σy py S0 σ r T N

value 0.5 1.5 4 1.0 12% 0.5 1.0 12% 0.5 1.0 15% 3.3% 3yr 48

Table 1: parameter values

Let us first assume that there is no external oder flow Ln ≡ 0, and that the terminal liability
F is given by

F (SN , YN , Z
i
N ) := C − 3SNYNZ

i
N , (6.1)
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where C ∈ R is an arbitrary real constant. Since the result is invariant to a constant shift, one
may adjust the constant C, if necessary, to make the liability positive. From the discussion in
Section 2.4, we expect that the equilibrium price distribution for this liability will yield a positive
excess return. We can verify this expectation by observing Figure 1, which presents the comparison
of the marginal price distributions under the equilibrium measure (P) and the risk-neutral measure
(Q) at 1-year and 3-year points.

Figure 1: Comparison of the marginal price distribu-
tions under the equilibrium measure (P) and the risk-
neutral measures (Q) at 1-year and 3-year points for (6.1).

Figure 2: Comparison of the marginal price distribution
P and the conditional price distributions P(·|Y top−25%)
and P(·|Y bottom−25%) at 3-year point for (6.1).

Figure 3: Comparison of the expected values of S(tn)
under Q, P, P(·|Y top−25%), and P(·|Y bottom−25%) for (6.1).

Figure 4: The time evolution of the expected trad-

ing volume E[|φ1,∗(t)|2]
1
2 , E[|φ1,∗(t)|2|Y top−25%]

1
2 , and

E[|φ1,∗(t)|2|Y bottom−25%]
1
2 for (6.1).

We can also provide the conditional price distribution P(Sn ∈ A|Yn = y), ∀A ⊂ Sn for each
y ∈ Yn. At the three-year point (n = 48), the value of Y marking the 75th percentile (Y top−25%)
is equivalent to a total of 36 up moves, while the 25th percentile (Y bottom−25%) is equivalent to
12 up moves. Figure 2 compares the conditional distributions {P(Sn = s|Y top−25%), P(Sn =
s|Y bottom−25%), ∀s ∈ Sn} with the marginal distribution P(·) at the three-year point. As expected
from the functional form in (6.1), the deviations from the risk-neutral distribution are positive
and become larger for the larger value of Y . If Y is a stochastic process possessing large jumps
(instead of the diffusion-like process in this section), which is the case, for example, for regime-
switching models, we expect a substantial sudden shift of the transition probabilities and hence the
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equilibrium excess return.
In Figure 3, we provide the time-evolution of the expected value of the stock price under the

equilibrium (P) and the risk-neutral (Q) measures (EP[S(t)],EQ[S(t)]). We also include the condi-
tional expectation values (EP[S(t)|Y top−25%],EP[S(t)|Y bottom−25%]) for Y in the 75th (Y top−25%)
and 25th percentiles (Y bottom−25%), choosing the nearest nodes at each time. Since the risk-free
rate is r = 3.3% per annum, one can observe from Figure 3 that the excess return is roughly 8%
for the equilibrium distribution P, and roughly 13% and 5% per annum, conditional on Y top−25%

and Y bottom−25%, respectively. Figure 4 gives the time-evolution of the expected trading vol-
ume EP[|φ1,∗(t)|2]

1
2 under the equilibrium distribution, as well as the conditional expectations

(EP[|φ1,∗(t)|2|Y top−25%]
1
2 ,EP[|φ1,∗(t)|2|Y bottom−25%]

1
2 ). The slightly irregular zigzag behavior ob-

served in Figures 3 and 4 is an artifact of our selection of the nearest nodes when determining the
top and bottom 25th percentiles for Y at each time step.

Figure 5: Comparison of the marginal price distribu-
tions under the equilibrium measure (P) and the risk-
neutral measures (Q) at 1-year and 3-year points for (6.2).

Figure 6: Comparison of the marginal price distribution
P and the conditional price distributions P(·|Y top−25%)
and P(·|Y bottom−25%) at 3-year point for (6.2).

Figure 7: Comparison of the expected values of S(tn)
under Q, P, P(·|Y top−25%), and P(·|Y bottom−25%) for (6.2).

Figure 8: The time evolution of the expected trad-

ing volume E[|φ1,∗(t)|2]
1
2 , E[|φ1,∗(t)|2|Y top−25%]

1
2 , and

E[|φ1,∗(t)|2|Y bottom−25%]
1
2 for (6.2).

In Figures 5, 6, 7 and 8, we present the corresponding results for the different liability function

F (SN , YN , Z
i
N ) := C + 3SNYNZ

i
N (6.2)

which exhibits the opposite sign of sensitivity to the stock price. As expected, we observe that the
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excess return becomes negative in this case.

Now, we introduce the external order flow. We continue to use the same parameter values
from Table 1 and the liability function defined by (6.1), but now including an external order flow
(without y-dependence):

Ln(s) := amax(s− c, 0). (6.3)

We set c = 1.75 and consider two scenarios, one is a = 7 and the other is a = −7. In the former
case, there is positive supply of the stock when the stock price is very large s > 1.75, and in the
latter case there is positive demand (i.e., negative supply) when s > 1.75. In Figure 9, we compare
the marginal as well as conditional price distribution as in Figure 2 with the positive external order
flow in the left panel and the negative one in the right panel. We can clearly observe that the
positive supply generates a heavy right tail in the equilibrium distributions and that the positive
demand causes the opposite.

Figure 9: Comparison of the marginal price distribution P and the conditional price distributions P(·|Y top−25%) and
P(·|Y bottom−25%) at 3-year point. F is given by (6.1) and the external order flow is equal to Ln(s) = 7 max(s−1.75, 0)
(i.e., positive supply) in the left panel and Ln(s) = −7 max(s− 1.75, 0) (i.e., positive demand) in the right panel.

6.2 Recursive utility

We now consider the recursive utility model discussed in Section 3. The model of stochastically
biased agents in Section 5 is treated only in Figure 13. For numerical ease, we assume no path-
dependence. The liability F is thus assumed to depend solely on the terminal stock price SN ,
while the incremental endowments gn depend solely on the current price Sn. See Remark 3.3 for
the corresponding analytic solutions. We use the same models for (Sn, Yn, Z

i
n)Nn=0 and γi as in

Section 6.1. ψi is assumed to be uniformly distributed over the (Nψ + 1) discrete values given by

ψi(kψ) := ψ + (ψ − ψ)kψ/Nψ, kψ = 0, · · · , Nψ.

For simplicity, we assume that the time preference coefficient δi := exp(−ρ∆) takes a common
value across the agents. Moreover, we assume that ζi and ψi are related by

ψi/ζi = aζ ,
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where aζ is a positive constant common across the agents. We shall use the parameter aζ to control
the ratio

ηin−1/η
i
n ' ψi/ζi.

See the discussion in Section 3.4 for the role of this ratio. The parameter values to be used
throughout this subsection (except the last example) are summarized in Table 2 below:

parameter γ γ Nγ ψ ψ Nψ ρ z0 σz pz Y0 σy py S0 σ r T N

value 0.4 1.6 3 0.5 1.5 2 5.0% 1.0 12% 0.5 1.0 12% 0.5 1.0 15% 3.3% 3yr 48

Table 2: parameter values

Figure 10: Comparison of the risk-neutral as well as the equilibrium marginal price distributions with
aζ = 0.9, 0.95, 1.0, 1.05 at 1-year (left panel) and 3-year (right panel) points.

Figure 11: Comparison of the expected values of S(tn) under the risk-neutral as well as the equilibrium
price distributions with aζ = 0.9, 0.95, 1.0, 1.05.

Since the effects of the stochastic liability and incremental endowments on the equilibrium price
distributions are as expected from the results in the previous subsection, let us first concentrate
on the effect of the ratio aζ = ψi/ζi. We set Ln ≡ 0, ∀n and define the liability function and the
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incremental endowments in the following way:

F (SN , YN , Z
i
N ) := C − 2SNYNZ

i
N , (6.4)

gn(Sn, Yn, Z
i
n) := C ′ + 1.5∆SnYnZ

i
n, 1 ≤ n ≤ N. (6.5)

Here, C,C ′ are arbitrary constants irrelevant for the equilibrium distributions. In Figure 10, we
plot the risk-neutral as well as the equilibrium marginal price distributions with 4 different values
of the ratio aζ = 0.9, 0.95, 1.0, 1.05 at 1-year (left panel) and 3-year (right panel) points. Figure 11
provides the time evolution of the expected value of the stock price S(tn) for each case. As inferred
from the discussion in Section 3.4, the deviations from the risk-neutral distribution become smaller
as aζ decreases. This effect (smaller deviations) is more pronounced in earlier periods. We can
observe that the value of aζ = ψi/ζi can efficiently control the level of the excess return without
changing the other parameters. More specifically, higher values of aζ put more weight on the
continuation utilities relative to current consumptions, thus increasing the agents’ hedge needs,
and leads to higher excess returns.

Figure 12: Comparison of the stock price distributions
at 3-year point with Ln given by (6.6) and Ln ≡ 0

Figure 13: Comparison of the marginal price distribu-
tion at 3-year point with the rational agents, those with
contrarian-bias ($c

n), and with momentum-bias ($m
n ) de-

fined in (6.7).

Next, we set the incremental endowments gn ≡ 0 while keeping the liability function the same
as in (6.4). We are now going to study the effects of an external order flow defined by

L(Sn) := 8 max(Sn − 1.6, 0)− 8 max(1.1− Sn, 0), 0 ≤ n ≤ N − 1. (6.6)

This demonstration aims to show how flexibly the shape of equilibrium distributions can change.
The definition in (6.6) implies a positive supply (i.e., sell orders from other groups) of the stock
when the price Sn is high and a positive demand (i.e., buy orders from other groups) when the price
is low. In Figure 12, with aζ = 1.07, we compare the equilibrium price distribution at 3-year point
with Ln given by (6.6) and that with Ln ≡ 0. It shows that the existence of the external order
flow (6.6) makes the equilibrium distribution fat-tailed in both directions, which is as expected
by the analysis made in the last paragraph of Section 2.4. This suggests that the existence of
individual investors behaving as a contrarian makes the equilibrium price distribution fat-tailed,
which is an interesting example to demonstrate that microstructures of the market impact on the
tail distributions. Corresponding modifications in the terminal liability F and/or the incremental
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endowments gn would yield similar results.
As a related analysis that explores the impact of non-rational agents on tails of the equilib-

rium price distributions, we utilize the subjective measure framework developed in Section 5. We
investigate how agents’ biased estimates on the transition probabilities impact the equilibrium
distribution. We define the contrarian-bias ($c

n) and momentum-bias ($m
n ) as follows:

$c
n(Sn, Z

i
n) = 0.8 ∨ S0β

n

Sn

Z0

Zin
∧ 1.2,

$m
n (Sn, Z

i
n) = 0.8 ∨ Sn

S0βn
Zin
Z0
∧ 1.2,

(6.7)

We use parameter values taken from Table 2, aζ = 1.05, and (6.4) and (6.5) for the terminal
liability and the incremental endowments. Figure 13 compares the equilibrium distributions for
the three agent types: rational, contrarian-biased, and momentum-biased agents. As discussed in
Section 5.3, the agents with contrarian-bias produce a fat-tailed equilibrium price distribution and
those with momentum-bias a thin-tailed one.

In the last numerical example, we examine the effect of σz, the volatility of the process (Zin), on
trading volume. This volume is quantified by the standard deviation of the stock position among
the agents, which is E1[|φi,∗t |2]

1
2 , as discussed in Section 2.4. To highlight the effect of σz, we reduce

the variation in (γi, ψi, ζi). The parameter values we use are summarized in Table 3 below:

parameter γ γ Nγ ψ ψ Nψ ρ z0 aζ pz Y0 σy py S0 σ r T N

value 0.95 1.05 2 0.95 1.05 2 5.0% 1.0 1.02 0.5 1.0 12% 0.5 1.0 15% 3.3% 3yr 48

Table 3: value of parameters for Figure 14.

Figure 14: Left panel: Comparison of the expected value of S(tn) under the risk-neutral as well as the
equilibrium price distributions with σz = 0%, 5%, 10%, 15%, 20%. Right panel: Comparison of the trading
volumes EP[|φ1,∗(t)|2]

1
2 with σz = 0%, 5%, 10%, 15%, 20%.

We put Ln ≡ 0 and use the terminal liability and the incremental endowments defined by (6.4)
and (6.5). In the right panel of Figure 14, we have plotted the evolution of the trading volume

EP[|φ1,∗(t)|2]
1
2 for 5 different volatilities of the process (Zin): σz = 0%, 5%, 10%, 15%, 20%. We

observe that the trading volume increases with the volatility σz. The non-zero trading volume,
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even when σz = 0, stems from the non-zero variation in the risk-aversion coefficients. The near-
identical trading volume in the earliest period is a consequence of our assumption that the agents
have the common initial value Zi0 ≡ z0 = 1, ∀i ∈ N. This assumption is made solely for numerical
convenience.

In the left panel of Figure 14, we have plotted the evolution of the expected value of S(t) for
each case of σz. (The result for the risk-neutral measure is also plotted for reference.) From this
result, we see that the size of excess return is almost unaffected by the volatility σz. This stems
from the functional form of (6.4) and (6.5), as well as the fact that the expectation value of Zin
remains nearly identical across all cases. These results suggest that we can control trading volume
by changing σz without significantly affecting the excess return. Although trading volume is also
significantly influenced by the variation in F i0-measurable random variables such as γi, ζi, and ψi,
these variables may simultaneously cause a large shift in the excess return.

6.3 Limits of our framework and practical implications

As our examples demonstrated, the equilibrium price distributions and the resultant excess returns
can substantially deviate from the risk-neutral measure, depending on the agents’ characteristics.
This deviation can possibly lead to an odd situation where the required equilibrium excess return
(or more generally transition probabilities) becomes totally unrealistic or economically unfeasible.
As is common for price-formation frameworks, our model does not argue how we can justify such a
stock price performance based on the issuer’s business activities and the surrounding business and
macroeconomic environment. Our framework only provides the necessary transition probabilities
(and thus excess return) required by the agents to compensate their risk for achieving the market-
clearing equilibrium. Therefore, it does not tell if the equilibrium can be achieved nor what happens
when it fails. However, our framework can still offer regulatory bodies valuable information on po-
tential market instability by providing the necessary transition probabilities, marginal/conditional
price distributions, and in particular the excess return required to maintain the equilibrium, which
would form a flexible platform for market stability analysis under various agent-based scenarios.

7 Concluding remarks and future research directions

In this work, we have successfully developed a numerically tractable and readily implementable
framework for the mean-field equilibrium (MFE) price formation problem by combining MFG
theory with the binomial tree structure. This classical simplifying device allows us to bypass the
substantial mathematical and computational challenges inherent in continuous-time models, such
as the well-posedness and numerical evaluation of FBSDEs of McKean-Vlasov type or coupled non-
linear PDEs. We proved the existence of the unique MFE for agents with exponential utilities and
recursive utilities of exponential-type and derived an explicit analytic formula for the stock price
transition probabilities.

Our framework successfully incorporates highly general model features, including stochastic ter-
minal liabilities and incremental endowments dependent on unhedgeable common and idiosyncratic
factors, as well as external order flow. Moreover, the analytic tractability of our approach enabled
us to achieve two significant extensions that would be formidable problems in the continuous-time
setting:

35



• We introduced multi-population heterogeneity, allowing populations to differ fundamentally
in their risk characteristics, liabilities, and endowments.
• We relaxed the standard rational expectations hypothesis by modeling agents operating under

subjective probability measures.

Our results clearly show that the equilibrium distributions can substantially change their shapes
in response to these inputs. In particular, we found that countercyclical liabilities (or cyclical
endowments) increase the excess return required by the agents, and that the equilibrium price
distributions can become fat-tailed due to either contrarian external order flow or contrarian bi-
ases arising from agents’ subjective measures. Furthermore, trading volume per capita is crucially
dependent on the variation in idiosyncratic factors. The explicit and tractable solution offers regu-
latory bodies a flexible platform for market stability analysis under various agent-based scenarios.
Empirical analysis regarding these findings would constitute an important research topic.

Our method may also be applied to other asset classes, such as commodities and foreign ex-
changes, provided they can be modeled by binomial trees. Specifically, frameworks like the Black-
Derman-Toy model (BDT) [8] could be adapted to analyze a mean-field equilibrium for risk-free
interest rates. Furthermore, various practitioner techniques, such as implied binomial trees, can
now serve as valuable tools for investigating the MFE in our framework, advancing beyond their
initial purpose. (For a comprehensive overview of general Markov processes in finance, see, e.g., [7]
and [25].)

Nevertheless, there remain several important challenges waiting for further research. First,
extensions to general multinomial trees and multi-asset frameworks constitute interesting future
research directions. Although our framework remains conceptually the same, there appear several
hurdles to be overcome.

• Although it is not difficult to put appropriate assumptions so that there exists a unique
optimal solution, its explicit form is generally unavailable.
• There are more degrees of freedom in the transition probabilities than are imposed by the

market-clearing conditions. This remaining freedom must be fixed by imposing an appropriate
dependence structure among the assets.

Due to these issues, while the second point might be beneficial for flexibility, numerical costs would
be significantly higher than the single asset case, in particular, in the presence of common noises.
The fact that the market-clearing condition alone does not uniquely determine the price processes
in the presence of multiple stocks is already well known. (See, Karatzas & Shreve [30, Chapter
4].) This is because that one can build a equivalent set of mutual funds from the original stocks
without affecting the market-clearing condition.

Second, constructing mean-field equilibrium among agents with other utilities, such as power-
type utilities, remains one of the most challenging problems. This is a common issue, mirroring
the challenge in the continuous-time setting. For utilities other than the exponential-type, the
optimal trade position φi,∗n is, in general, dependent on the size of wealth at tn. Since the wealth
of each agent Xi

n at tn depends on the trading strategy up to tn, the mean-field equilibrium
condition leads to a complex fixed-point problem involving the backward φi,∗n and forward Xi

n

discrete processes. Although we can decouple the wealth process by deliberately constructing the
model so that φi,∗n ≡ 0, the resulting model allows no trading activity in the market and is thus
clearly unrealistic.
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[3] Aı̈d, R., Possamäı, D., Touzi, N., Optimal electricity demand response contracting with responsiveness incentives,
Mathematics of Operations Research, 2022, Vol. 47, No. 3, pp. 2112-2137.

[4] Aı̈d, R., Bonesini, O., Callegaro, G., and Campi, L., Continuous-time persuasion by filtering, Journal of Economic
Dynamics and Control, 2025, Vol. 176, 105100.

[5] Bayraktar, E., Mitra, I., Zhang, J., Countercyclical unemployment benefits: a general equilibrium analysis of
transition dynamics, Mathematics and Financial Economics, 2024, Vol. 18, pp. 213-232.

[6] Ashrafyan, Y., Bakaryan, T., Gomes, D. and Gutierrez, J., A duality approach to a price formation MFG model,
Minimax Theory and its Applications, 2023, Vol. 8, pp. 1-36.
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