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Abstract

The friend-of-a-friend effect is the idea that when two firms share a common trad-
ing partner, a new link between them is likely to form. We quantify this effect in
production networks, where the shared partner acts as relational capital facilitating
new connections. First, we develop a general equilibrium (GE) model that endogenizes
firms’ link formation and incorporates the friend-of-a-friend mechanism. We show that
the GE model simplifies to a dyad-level logit specification, enabling us to estimate
the friend-of-a-friend effect using a quadruple-based conditional logit that controls for
buyer and supplier fixed effects. Analyzing a dynamic panel of Japanese firm-to-firm
transactions provides strong evidence of the friend-of-a-friend effect, with a magnitude
comparable to other important factors like physical distance and sectoral proximity. Fi-
nally, we evaluate the macroeconomic impact through a counterfactual analysis within
a calibrated GE model. Results indicate that removing the friend-of-a-friend effect
decreases welfare by 0.6% and changes the propagation of firm-level shocks by altering
the network structure.
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1 Introduction

A growing body of research shows that production networks are key to aggregate outcomes.
The structure of these networks determines aggregate productivity and controls how indi-
vidual shocks propagate through the economy (Boehm and Oberfield, 2020; Carvalho et al.,
2021). However, we understand relatively little about how these networks form, especially
since each firm-to-firm connection is inherently relational rather than simply driven by anony-
mous market mechanisms.

We focus on a specific relational channel, the friend-of-a-friend (FoF) mechanism: when
two firms share a common partner, that partner acts as intangible relational capital, pro-
moting link formation between the two firms. This mechanism has been widely discussed in
social and organizational networks, including labor markets, scientific and corporate collab-
oration, and digital platforms (Granovetter, 1973; Powell et al., 1996; Kossinets and Watts,
2006; Leskovec et al., 2008). We can observe a clear, though not conclusive, signature of
this mechanism in many types of networks in the form of clustering, where two neighbors
of a given node are more likely to be neighbors themselves. While directly confirming the
FoF mechanism is challenging, we can infer its presence from clustering patterns in observed
networks.

However, high clustering does not automatically prove the FoF mechanism. An alterna-
tive explanation, known as homophily, proposes that clustering can naturally arise from the
well-documented tendency to form relationships with proximate counterparts. Specifically,
in production networks, a firm’s choice to connect with partners close in geography or indus-
try suggests that those partners are also likely to be near each other. This proximity between
the partners increases the chances of forming direct links, creating a cluster even without
an FoF effect. Therefore, to understand relationship-based link formation and its macroeco-
nomic importance, we must first distinguish the actual FoF effect from the clustering caused
by homophily.

This paper directly measures the friend-of-a-friend effect from observed clustering pat-
terns and assesses its macroeconomic significance. We develop a general equilibrium (GE)
model with endogenous production network formation, incorporating the FoF and homophily
mechanisms, and demonstrate that the link-formation process simplifies to a dyad-level logit
model. Using panel data from Japanese production networks, we identify a clear FoF effect
separate from homophily. Additionally, the calibrated model underscores its macroeconomic
importance: the FoF effect encourages link formation and influences how shocks propagate
through production networks by changing the network topology.

First, we present several motivating facts that suggest the possibility of the FoF effect and
the homophily mechanism, using production network data from Japan. We start by analyzing
the local clustering coefficient—the fraction of all possible partner-pairs around firm ¢ that
are linked. Compared to the random benchmark, the production network data show a much
higher average of this coefficient across firms. While this could indicate the FoF mechanism,
the data also support the homophily mechanism. We examine the average pairwise proximity
between all potential partners around firm ¢ in terms of sector and geography, and find that
the pairwise proximity is actually higher in the data than in the random benchmark. This
suggests that partners of firm ¢ are more similar to each other, which could explain the
observed clustering. These diagnostics motivate a structural empirical approach that can



distinguish the link formation process related to FoF from proximity-driven incentives.

Then, we develop a general equilibrium model that endogenizes the network formation
decision of each firm. In a fixed-cost framework following Bernard et al. (2022), each potential
link is formed if a random link-formation cost is lower than the expected surplus from
that link. This surplus depends on sectoral proximity and physical distance, as implied by
firms’ production structure. We assume the link formation cost is discounted when a buyer-
supplier pair has a common partner in the previous period. A discount parameter governs
the intensity of this FoF effect.

Using the model, we then estimate the discount parameter. We first demonstrate that
it is estimated as a coefficient of a dyad-level logit model with unobserved heterogeneity of
supplier and buyer after controlling for the effects of several sources of homophily. To dif-
ference out these two-sided fixed effects in a binary-choice setting, we apply the conditional
logit transformation on quadruples proposed by Charbonneau (2017) and Jochmans (2018),
and address the combinatorial challenge by randomly sampling informative quadruples fol-
lowing Izumi et al. (2023). The estimation results provide strong evidence of a FoF effect:
having a common partner reduces network formation costs by 80%, which is comparable to
a 1.75 standard deviation decline in physical distance or a 1.5 standard deviation increase in
sectoral proximity for link formation. Interestingly, ignoring homophily significantly inflates
the estimated coefficient, which aligns with the idea that the observed clustering results from
a mixture of both forces.

Finally, we analyze the macroeconomic implications of FoF by comparing two equilibria
in the GE model calibrated to Japan’s manufacturing sector in 2015: one with the actual
production network structures and another with a counterfactual network that excludes the
FoF effect in its formation process. In the counterfactual economy, welfare decreases by 0.6%,
mainly because firms cannot produce goods as efficiently as in the baseline due to having
fewer suppliers. Decomposition results indicate that the less efficient production propagates
to other firms through existing production networks, which amplifies the initial impact on
welfare.

We further compare the baseline and the counterfactual economy excluding FoF in terms
of shock transmission. We apply the same productivity shock to targeted groups of firms in
the two economies, and analyze the resulting gap in welfare responses. Our analysis reveals
that shocks to firms that lose their buyers in the CF network affect welfare less in CF than
in the baseline, because the downstream propagation of these shocks via their lost buyers
is removed. Shocks to firms that lose their suppliers also affect welfare less; however, this
mainly reflects that these firms’ unit costs increase, making their goods less important as
final goods for the household.

Related Literature

This paper connects to various strands of literature. First, it expands on research analyzing
the FoF effect in production networks. Atalay et al. (2011), Carvalho and Voigtlander
(2015), and Chaney (2014) are the first to introduce an FoF perspective into production and
trade networks by including an exogenously specified stochastic process. Recent studies by
Panigrahi (2022) and Alfaro-Urena and Zacchia (2024) construct a sourcing decision process
for buyers that incorporates the FoF mechanism and estimate it using production-network



data from India and Costa Rica. Building on prior research, we offer a model with a link-
formation process where heterogeneity on both sides (supplier and buyer) plays a role, and
our GE setting enables us to assess the macroeconomic consequences of FoF. Despite the
model’s complexity, our estimation approach, rooted in network econometrics, can handle
unobserved heterogeneity using fixed effects. Additionally, we highlight the macroeconomic
importance of FoF': its quantitative impact on overall welfare and its topological influence
on shock propagation.

This paper also adds to the rapidly expanding literature on endogenous production net-
work formation in general equilibrium (e.g., Oberfield, 2018; Eaton et al., 2022; Acemoglu and
Azar, 2020; Lim, 2018; Bernard et al., 2022; Dhyne et al., 2021; Kopytov et al., 2022; Elliott
et al., 2022; Arkolakis et al., 2023; Miyauchi, 2024). We advance the literature by presenting
a portable estimation method that combines our extension of the workhorse fixed-cost-type
models (e.g., Lim, 2018; Huneeus, 2020; Bernard et al., 2022) with the dyad-level logit ap-
proach. Additionally, our counterfactual analysis underscores the aggregate significance of
the FoF effect, emphasizing the need to consider nonmarket factors in firms’ networking
strategies.

Our estimation approach builds on recent advances in network econometrics (e.g., Gra-
ham, 2016; Charbonneau, 2017; Jochmans, 2018; Izumi et al., 2023). We contribute to this
literature by providing an underlying GE framework, linking micro-level estimates to the
macro-level assessment. Additionally, we leverage the dynamic panel structure of our net-
work data! and estimate the effect of existing link structures on link formation, avoiding the
simultaneity problem.

Outline

The rest of this paper is organized as follows. Section 2 discusses motivating facts about
clustering using the production network in Japan. Section 3 introduces a GE model to ana-
lyze the mechanism and key macroeconomic implications quantitatively. Section 4 explains
how to identify the key parameters and presents their estimation results. Section 5 examines
the aggregate implications using the calibrated model. Section 6 concludes the paper.

2 Motivating Facts

2.1 Data

We use a proprietary firm-level dataset from Tokyo Shoko Research (T'SR), a leading credit
reporting agency in Japan.? TSR gathers comprehensive information on companies through
personal interviews or phone surveys, complemented by public sources such as financial
statements, corporate registrations, and public relations documents. The data are updated
annually, and we have compiled datasets from 2007 to 2022 that cover all sectors in Japan.

!This longitudinal dimension of the data is also utilized by Kawakubo and Suzuki (2023), Miyauchi
(2024), and Asai and Nirei (2025) to study the dynamic evolution of firm-to-firm networks.

2Check Carvalho and Tahbaz-Salehi (2019) and Bacilieri et al. (2023) for comparison with production
network data in other countries.



In addition to standard financial information about firms, including the number of em-
ployees, sales, four-digit industry classification, and address, the TSR data provide unique
details about transaction partners. Each firm reports its suppliers, buyers, and major share-
holders up to 24 firms. Despite this reporting limit, the truncation is unlikely to be restrictive
in practice for two reasons. First, the proportion of firms reporting exactly 24 suppliers or
buyers, which could suggest a boundary due to truncation, is less than 0.1%. Second, we
merge self and counterparty reports following Bernard et al. (2019) and Carvalho et al.
(2021). Specifically, we combine lists of suppliers (buyers) reported by the firm itself and
counterparty lists showing the firm as a buyer (supplier). Therefore, even if the self-reported
number of partners hits the cap, as long as the partners report the truncated links, the
impact of truncation remains minimal.

For cross-sectional analysis in this section, we use the sample of firms reporting in 2015.
Following the structure of the model and its estimation strategy developed in Section 3, the
empirical analysis in Section 4 relies on a panel structure of our data and uses the two-year
panel (2014-2015). In the appendix, we present summary statistics of the data and confirm
that our results are robust to alternative sample years.

2.2 Clustering Coefficient

We first analyze a well-known measure, the local clustering coefficient. For simplicity, we treat
the network as undirected in this section, while it is considered directed in later estimation
sections. The local clustering coefficient, C;, for an undirected graph, is the proportion of
all possible partner-pairs around firm ¢ that are linked to each other, as defined below.

where P; is the set of partners (suppliers and buyers) of i, and L; is the number of links
between firms in P;.> This can be interpreted as the probability that two distinct partners
of i are linked. Figure 1 shows the graphical examples. In the left example, several links
between partners of firm ¢ are observed, implying a higher local clustering coefficient of firm
1 compared to the right example, where there are no links between any pair of the partners
of 7.

Figure 2 shows a histogram of the local clustering coefficient for firms in Japan in 2015,
with the sample mean marked by a red dashed line. A green dashed line indicates the mean
from degree-preserving randomized networks (Maslov and Sneppen, 2002) used as a null-
network benchmark, where all links were randomly rewired while preserving the distribution
of the number of connection partners.” Compared to the null networks, the real data shows

C; =

(2.1)

3In this section, we exclude firms with |P;| < 1.

1A large clustering coefficient, i.e., E[C;] - 0 for N — oo, is one of the characteristics of so-called
small-world network. For the details, see Watts and Strogatz (1998).

®Note that the mean is one realization of a random variable, as a random sampling procedure is involved
to form the null network. In Appendix D.2, we show that the mean value for the random null networks is
robust for other random seeds.
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Figure 1: Graphical illustration of clustering coefficient calculation

a higher average. This is consistent with the presence of the friend-of-a-friend (FoF) effect,
where a common partner encourages two firms to form a connection.
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Figure 2: Distribution of clustering coefficients across firms in Japan’s production network
(2015)

Not only the FoF effect but also homophily can explain the high clustering observed.
A well-known fact about production networks is that firms tend to form relationships with
other firms in nearby areas and industries close to their own (Bernard et al., 2019; Arkolakis
et al., 2023; Miyauchi, 2024). Suppose firm i connects with partners nearby in terms of
geography or industry sector. Mechanically, this means that partners of firm 7 are also likely
to be close to each other. Consequently, this proximity between pairs of partners should
increase the likelihood that these partners have relationships with each other, even without
the FoF effect.

To demonstrate the prevalence of the homophily effect, for each firm i, we calculate the
average pairwise proximity among i’s partners, considering all unordered pairs {p, ¢}. Let the
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X . o
symbol ( k) denote the set of all k-element subsets of the set X'. Given a proximity measure

g(p, q) defined on unordered pairs (7;), the average pairwise proximity DY is defined as

D5<T1i) > glp.a) (2.2)

2 ) (pae (Z)

The average pairwise proximity D? increases when a firm’s partners are closer together. For
g(p, q), we examine two common measures of proximity: physical distance and sectoral prox-
imity. Our choice of physical distance is supported by the strong out-of-sample performance
of gravity models, which consistently demonstrate that distance reduces bilateral trade in
the literature (Head and Mayer, 2014). Sectoral proximity is based on the stability of in-
put—output linkages and their widespread use in measuring technological relatedness and
positions along value chains (Antras et al., 2012). We calculate sectoral proximity as the
average of the input coefficient and the output coefficient, following the definition of Bacilieri
et al. (2023)° using the two-digit input-output table for Japan in 2015.

Figure 3 shows the distributions of both measures, with the sample mean and the null
mean overlaid just like before. Both figures provide evidence of homophily’s effect on the
observed clustering in Figure 2. Partners of a firm tend to be close to each other, both
physically and sectorally. This indicates that even without FoF, a pair of partners within a
firm is likely to connect, driven by incentives based on sectoral and geographical proximity.

To summarize our reduced-form findings, the production network data show high cluster-
ing coefficients, consistent with FoF; however, homophily based on geographical and sectoral
proximity, which can also explain the high clustering coefficient, is clearly evident in the
data. These facts motivate our structural approach to distinguish FoF from proximity in the
following sections.

3 Model

In this section, we develop a GE model with an endogenous production network structure
in two steps. First, we characterize an equilibrium where the production network structure
is taken as given. Next, we describe how each firm makes decisions regarding network for-
mation. We demonstrate that, under some assumptions, the dyadic link formation equation
is endogenously characterized as an equilibrium condition.

6Given a typical input-output network matrix X, where rows represent buyers and columns represent
ij
> X

(sales share) B as B;; = J__ . Since we analyze undirected networks in this section, we average the two
> Xij
measures.

"See https://www.soumu.go.jp/english/dgpp_ss/data/io/io15_00001.htm.

suppliers, the input coefficient (input share) A is calculated as A;; = and the output coefficient
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Figure 3: Distributions of average pairwise proximity across firms in Japan’s production
network (2015)

3.1 Fixed Network Model

3.1.1 Environment

The economy consists of a representative household and a set of firms N owned by the
household. Each firm ¢ € N is characterized by fundamental productivity ¢;, fundamental
demand Y;, sector k;, location a;, set of suppliers S; C N, and set of buyers B; C N. By
combining labor and intermediate inputs sourced from its own suppliers, each firm produces
its own differentiated good.

3.1.2 Households

The representative household supplies a unit of labor inelastically and has CES preferences
over final goods, expressed as:

o1
U= |>_bae)™ ] (3.1)
ieN
Then, each of the demands is
o— Di -7
Ci = X; ! (PFinal) U (3 2)
1— 11
with PFinel — [Z <&> ] . (3.3)
eN Xi



3.1.3 Firm production

Each firm produces its output using labor and a bundle of inputs that include intermediate
goods sourced from its suppliers. The nested CES production function is given by:

Yi = ¢ (Ck(lﬂ(a%1 +(1-a) (Mz)%>m (3.4)
with M; = [Z(A:gxg)”al] a (3.5)
ES;

where «, 6, o are the intensity of labor input, the elasticity of substitution between labor
and the intermediate goods bundle, and the elasticity of substitution among intermediate
goods inputs, respectively. )\:J indicates sectoral proximity between the sector of buyer k;
and that of supplier k;.®

Then, its unit cost is

1 1
Cz — g (a9w1—e + (1 o a)G(R)l—G) 1i9 (3 6)
s 1—0o lia
. Taij ;
with P, = Z (Epf) (3.7)
JES; k;

where pg is the price charged by supplier j on buyer 4, and 7,7 is an iceberg cost between
the locations of buyer a; and that of supplier a;.

M; .
By defining the demand shifter of firm 7 as A; := 2 we obtain

Aﬁj)gl (rop]) 7 A (3.8)

3.1.4 Market Structure

We assume suppliers behave atomistically toward buyers. Under a monopolistic competition
setting, based on the CES demand structure and the CRS production structure, a price that
maximizes its profit is given by

pi = 1 = pé; (3.9)

where

(3.10)

is a constant markup rate.

8When a variable has two firm indices, the subscript denotes the buyer and the superscript denotes the
supplier.



From (3.8) and (3.9), the surplus supplier j gains from selling intermediate goods to
buyer i is given by:

(2 7

. —1 . )

V) = MTpgTjjxg (3.11)
- -0 o1 a:\1—0

= (= DA ) (W) () (3.12)

Equation (3.12) shows that this surplus depends on two firm-level equilibrium variables (the
buyer’s demand shifter A; and the supplier’s unit cost (;) and two link-level exogenous

factors (sectoral proximity AZZ and iceberg cost 7;7).

3.1.5 Market Clearing

For each good i, we obtain the goods market-clearing condition as follows.

yi=ci+ Y Ta (3.13)

JEB;

We also obtain the labor market clearing condition (LMC) as follows.

L=>1 (3.14)

ieN
3.1.6 Profit

From the markup pricing rule, the profit of firm ¢ can be written as

Hence, the aggregate profit the household obtains and her income become
I=> " (3.16)
ieN
I =wlL + 1L (3.17)

3.1.7 Equilibrium

We first define an equilibrium for a given production network.

Definition 1 (Fixed Network Equilibrium). Given the network structure S; and B; for all
i € N, an exogenous network equilibrium is a pair of allocations and prices such that (1)
the household maximizes its utility, (2) firms maximize their profit by producing and setting
prices for each of their final and intermediate goods given the networks, and (3) the labor
market and the goods market clear. (We take the wage w = 1 as the numeraire.)

10



3.2 Endogenous Network Model

We now describe the link formation process. We consider a two-period economy with ¢t = 0
and ¢ = 1. The timeline of the economy is summarized in Figure 4. At t = 0, the network
structure is exogenously given, and the economy is in a fixed-network equilibrium. At the
beginning of t = 1, two types of shocks occur at the link level. First, each link present at t = 0
is exogenously terminated with some probability.” Next, for each link that is not present
at t = 0, a fixed cost to activate the link is drawn. Following the literature (Lim, 2018;
Huneeus, 2020; Bernard et al., 2022), we assume the supplier incurs the fixed cost. Then,
each supplier compares the realized fixed cost with the expected surplus from activating the
link and decides whether to form it; the collection of choices yields the network structure at
t = 1. Finally, the associated fixed-network equilibrium is realized.

1
1
t=0 t=1

E Link-formation by each firm
] and realization of the entire
i network structure
:
H .
L +
1
1
1
1
]
i

Realization of Fixed - Realization of Realization of Fixed

Network Equilibrium i link-level shock Network Equilibrium
i
1
1

Figure 4: Model Timeline for Link Formation and Equilibrium Realization

3.2.1 Network formation

To formalize suppliers’ decisions to form links, we introduce two assumptions. The first
assumption is static expectations. This assumption governs how a potential supplier j evalu-
ates the expected surplus (V7*7°““?) from a new link with buyer 7. Recall from (3.12) that
this surplus depends on the buyer’s demand shifter (A;) and the supplier’s unit cost (¢;).
The static expectations imply that the supplier does not forecast the ¢ = 1 values of these
equilibrium objects, while both of them could, in reality, change at ¢ = 1 due to the rewiring
of the production networks.'® Instead, the supplier evaluates the expected gain using the

9This is just to match the data in Section 5.1.

0This assumption is less restrictive than it may appear. First, suppose that the aggregate network
structure—except for the link between i and j—remains constant and any GE feedback is shut down. Then,
given the CRS production technology, an increase in demand from a new buyer ¢ leaves supplier j’s unit
cost (¢;) unchanged. Similarly, the assumption of atomistic suppliers implies that supplier j takes buyer
©’s demand shifter (A;) as given, even without static expectations. Therefore, the primary role of static
expectations is to fix the global network structure and exclude the GE feedback when the supplier evaluates

11



realized equilibrium values at ¢t = 0 (A? and CJO ). Therefore, the supplier j’s expected gain
is given by (3.12) evaluated at equilibrium objects ¢ = 0:

(o) (3.18)

e st @) () o

An alternative approach could be one of complete information, where firms know the
equilibrium outcome of £ = 1 at the time they decide on links. There are three drawbacks
to the complete information setup. First, equilibrium uniqueness is not guaranteed. Second,
calculating equilibria is infeasibly costly, unlike under the static-expectations assumption.
Third, and most critically, with the complete information setup, we lose the estimable equa-
tion shown in the next section: firms’ decisions would depend on t = 1 equilibrium objects,
which themselves depend on the decisions of all other firms, creating an intractable simul-
taneity problem for estimation.

The second assumption is friend-of-a-friend discount: a link-level i.i.d. log-logistic cost
shock é{’l is discounted by a factor exp(—/) if the supplier and buyer had a common partner
in the previous period."! While we are agnostic about the mechanism underlying the FoF
discount, a plausible explanation can be provided by reduced information frictions (Chaney,
2014) or a decline in search cost (Carvalho and Voigtlander, 2015).

We define C’ommonPartnerZ’O as an indicator of whether ¢ and j share a common partner
at t = 0. It is a directionally agnostic indicator that does not distinguish between common-
supplier, common-buyer, or cross-type cases. Then, a potential link between buyer ¢ and
supplier j is formed if

yemected > g exp(— B CommonPartner’®) (3.19)

—o A0 (0\1—0O k; o-1 a:\1—o ~i1l i0
= (=) A7 (&) ()x,é) (189)" > &) exp(—pB CommonPartner!”). (3.20)

a;

Equation (3.20) has a clear interpretation. Given an idiosyncratic cost shock éf’l, the
probability of the link realizing is high if (i) the buyer demands many intermediate goods
(large A;),'* (ii) the supplier produces efficiently (small ¢;), (iii) the supplier and buyer
are close in sector or location (large )\? , small 737), or (iv) they share a common partner

(CommonPartner] = 1).
3.2.2 Equilibrium

We define an equilibrium concept that includes each firm’s networking decision discussed
above.

the expected surplus. In reality, however, the network structure fluctuates stochastically due to independent
link-level shocks, and any firm action induces endogenous GE adjustments. One important mechanism that
is not internalized by suppliers due to the assumption is that acquiring a new buyer raises the supplier’s own
demand shifter, thereby enhancing the supplier’s probability of acquiring new suppliers.

"1 Appendix E, we analyze other specifications that consider heterogeneity in the intensity of FoF across
firm size, number of common partners, or topological location of common partners.

12A; becomes large when the firm requires a large intermediate input bundle (large M;) or when its
existing set of suppliers is, on average, expensive (large P;).

12



Definition 2 (Endogenous Network Equilibrium at ¢ = 1). Given the fixed network equi-
librium at ¢ = 0 and the realization of link-level shocks, an endogenous network equilibrium
at ¢ = 1 is the network structure and pair of allocations and prices such that (i) the net-
work structure is determined by each supplier’s networking decision in (3.20), and (ii) the
associated fixed-network equilibrium holds for that realized network structure.

4 Estimation of the Friend-of-a-Friend Effect

The structural model in the previous section provides us with an estimation equation for
the FoF effect. In Section 4.1, we first derive the estimation equation for the FoF effect,
leveraging a property of the dyad-level logit model. In Section 4.2, we show the estimation
results using the actual dyad-level panel data of Japanese production networks.

4.1 Dyad-level Logit Estimation

Taking logs of both sides of the link-formation inequality (3.20) yields the following dyad-level
logit model:

Y;j’l =TI {5 X C'O’n’L’n’ZO7’LPCZ7"157’L67570 + Vsector X IOg AZZ + Vdistance X 10g T((llzj

" a?uyer,o i afupplieﬁo + gg,l > 0} (4.1)

where Y;j’l is a dummy variable indicating whether a link is formed between buyer i and

supplier j at period 1. CommonPartnerf’o = 1 if there is a common partner of ¢ and j at

period 0. /\IZZ is the input coefficient between buyer sector k; and supplier sector k;. 77

is the iceberg cost between buyer location a; and supplier location a;. Buyer fixed effect
aP"W0 captures how many intermediate goods the buyer demands, and supplier fixed effect
af“p plier0 captures how efficiently the supplier can produce the goods, both of which are
unobservable. 5{’1 is a dyad-level error term following a logistic distribution.®

Our coefficient of interest is 3, which governs the FoF effect. Equation (4.1) shows that
by estimating the dyad-level binary response model with firm-level fixed effects and dyad-
level controls for sectoral and physical proximity measures, we can directly estimate the FoF
effect without calibrating other structural parameters in the GE model.*

Estimating models of this type presents two main challenges. The first is an incidental-parameter
problem caused by unobserved fixed effects o”***" and af“p Pler which bias nonlinear esti-
mation as noted by Wooldridge (2010). To address this, we use a method to eliminate the
fixed effects through variable transformation proposed by Charbonneau (2017) and Jochmans

(2018). For the general form of (4.1) with the assumption that the error term follows a lo-
gistic distribution Y/ = ]l{WZ-]IH +a; 4+, > e}, consider a quadruple o = {iy,2; j1, jo} and

13While we assume the cost shock is independent of the dyad-level proximity measures, this assumption
does not affect estimates of 8 as long as these characteristics affect the original log-logistic cost multiplica-
tively. These effects on the cost term are absorbed by Vsector and Ygistance-

MWithout the static expectations assumption in the model, we cannot consistently estimate § in the
reduced-form manner because of simultaneity bias.
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define Z, = 5 and R, = (W) — W/?) — (W/! — W}*). Charbon-
neau (2017) and Jochmans (2018) show that for the transformed variables defined on the
quadruple, we obtain
exp(R.0)
Pr(Z,=1|R,, Z, -1,1}) = ———Z—. 4.2
PZo = 1B, 2, € (-11)) = o el (12)
Note that the RHS represents the standard conditional-logit probability without any terms
related to fixed effects a; and «;; we can easily evaluate its likelihood.

The second issue is its computational burden, as the quadruple space grows exponentially,
O(N*). Following Izumi et al. (2023), we implement a Monte Carlo approximation to the
conditional likelihood: we select a uniform random subsample of quadruples that are part
of the conditional likelihood (Z, € {—1,1}) and maximize the log-likelihood in (4.2) on this
subsample. Standard errors are calculated using a nonparametric bootstrap. Appendix B.3
shows the details of this sampling procedure.

4.2 Estimation Results

We estimate (4.1) using the variable transformation method and sampling technique men-
tioned above. We assign period 1 to the year 2015, and based on the same TSR production-
network dataset used in Section 2, we utilize data from 2014 and 2015, retaining firms that
report their business activity in both years. Following the gravity literature, we assume a
power-law relationship between distance and iceberg costs, which means replacing the log of
the iceberg cost term with the log of distance does not affect the validity of the estimation
of our coefficient of interest, £.'® The sectoral proximity is calculated based on the input
coefficient, according to Acemoglu et al. (2012).*"

Table 1 shows estimation results for equation (4.1) across several models. Model 1 ex-
cludes all homophily terms. Model 2 adds log physical distance, and Model 3 adds log
sectoral proximity. Model 4 is our baseline specification, which incorporates all terms im-
plied by the model. Each specification accounts for the fixed effects of buyers and suppliers.
Across all models, we observe strong evidence of a friend-of-a-friend effect, indicated by the
coefficient on Common Partner. Results from the full model (Model 4) suggest that having
a common partner raises the log-odds of link formation by 1.56, making the odds approxi-
mately 4.8 times higher. This is comparable to reducing log distance by 2.08 (1.75 standard
deviations) or increasing log sectoral proximity by 3.0 (1.5 standard deviations).™®

15As discussed in Izumi et al. (2023), this procedure can be interpreted as an analogy to the standard
DID. In DID, we difference out the unobserved fixed effect by utilizing multiple observations in the time
dimension. Here, instead, we difference it out by multiple observations in the network dimension. (One firm
can be observed several times in a dyad-level data of the snapshot of production networks.)

16 Given a distance elasticity of the iceberg cost p, the coefficient on the log of physical distance corresponds
to the coefficient on the log of iceberg cost 7 times p.

17Since the networks we consider in this empirical section are directed, we use the input coefficient, unlike
in the motivating facts section, where we treat the network as undirected and take an average of the input
and output coefficients. This approach is consistent with the model structure.

18The standard deviations of each measure are calculated using all possible pairs of firms in the estimation
sample.
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Note that once homophily is controlled for, the estimated FoF effect decreases signif-
icantly (2.54 — 1.92 when adding physical distance, 2.54 — 2.28 when adding sectoral
proximity, and 2.54 — 1.56 when both controls are included). This finding confirms that
homophily explains a meaningful portion of the observed clustering, consistent with Section
2.2. Appendix D presents robustness checks demonstrating that our results are stable when
varying the sampled years and sectors or when excluding links with ownership ties. In Ap-
pendix E, we conduct heterogeneity analysis of the intensity of FoF across firm size, number
of common partners, and topological location of common partners.

Model 1 Model 2 Model 3 Model 4

Common Partner 2.54 1.92 2.28 1.56
(0.03) (0.05) (0.04) (0.05)

Physical Distance (log) -0.73 -0.75
(0.01) (0.01)

Sectoral Proximity (log) 0.50 0.52
(0.007) (0.01)

Supplier FE Yes Yes Yes Yes
Buyer FE Yes Yes Yes Yes

Table 1: Estimation results of the dyad-level logit model: coefficients and standard errors.

5 Macroeconomic Evaluation

In this section, we quantitatively evaluate the macroeconomic importance of the FoF effect
using the GE model. First, we calibrate the remaining model parameters in Section 5.1.
Next, we build a counterfactual network structure that would have realized at t = 1 without
the FoF effect based on the calibrated model combined with the empirical results on the
microeconomic intensity of the FoF effect in Section 5.2. Finally, we analyze the GE behavior
under the two networks at ¢ = 1: the calibrated baseline networks and the counterfactual
networks. By comparing them, we identify several key macroeconomic implications of the
FoF effect in Section 5.3.

5.1 Calibration
5.1.1 Aggregate Parameters

Table 2 summarizes the aggregate parameter values, their sources or references, and the data
used for setting targets. Regarding the elasticity parameters, we assume a Cobb—Douglas
aggregator for labor and the intermediate (IMD) bundle, with an elasticity of substitution of
3 across goods based on Broda and Weinstein (2006). The labor share « in the production
function is set to 0.54 to ensure that the ratio of aggregate intermediate inputs sales to the
sum of intermediate inputs sales and consumption sales matches the value in Japan’s 2015
input-output table.'® We normalize the aggregate labor supply to L = 1.

19See https://www.soumu.go. jp/english/dgpp_ss/data/io/i015_00001.htm.
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Parameter Description Value Target

6 EoS between labor and IMD bundle 1 Bernard et al. (2022)

o EoS between goods 3 Broda and Weinstein (2006)

Q Labor share 0.54 Expenditure share of IMD goods
L Aggregate Labor Supply 1 Normalization

Table 2: Summary of parameter values, their source/reference, and data for setting targets.

5.1.2 Micro Parameters

To calibrate firm-level fundamental productivity, we use the TSR data from the manufac-
turing sector in 2015 (V]| = 8142).*" Production network structure S; and B; are set to
the actual network structure. Fundamental productivity ¢; is calibrated to the number of
employees, and we assume fundamental demand y; = 1. Figure 5 shows a binned scatter of
model-implied vs observed log employment (both normalized to sum to one), which exhibits
a fairly good fit with R? > 0.99. In the appendix, we also confirm a good fit of non-targeted
moments. In line with the empirical analysis in Section 4, the industrial weight on inter-
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Figure 5: Number of Employees (Log): Model vs. Data

mediate goods Aﬁl is determined based on the input-output table in Japan at 2015.2! Also,

we adopt a power-law iceberg costs le with the distance elasticity p = 0.23, following Kano
et al. (2013).

5.2 Construction of Counterfactual Network

Next, we show how to build a counterfactual network that would have existed without the
FoF effect at ¢ = 1 in the model. In Appendix A.1, by combining Bayes’ rule with the

20We drop firms that do not report the sales, the number of employees, or the profit, and firms that do
not have any suppliers in the sample.
21See https://www.soumu.go. jp/english/dgpp_ss/data/io/io15_00001.htm.
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rare-event interpretation®® of the logit (where the odds ratio approximates the relative risk),
we demonstrate that the conditional probability that a FoF-backed dyad formed at ¢t = 1
in the baseline (with FoF) also emerges at ¢ = 1 in the counterfactual (without FoF) is

approximately Based on this result, we construct the counterfactual network as

exp(f3)

follows.??

1. Among all the observed links {link;;}, extract the links that are newly created in that
. . New, CP
year and have a common partner from the previous year, denoted as {lmkij }.

fraction of them and create the

1
2. Among the {link* “’}, randomly keep a
thinky™ exp(/3)

set of the counterfactual links, {linki]}kw’ C&, CF}, which are newly created and share a

common partner from last year.

3. Combine the remaining links not selected in step 1 ({linkij}\{link:gew’ “F1) and the

{lmkgew’ OF. OFY "and generate a counterfactual set of links {lmng 2

5.3 Aggregate Implications of Friend-of-a-friend Effect

Finally, we compare two economies: the baseline economy with the network structure being
{link;;}, and a counterfactual economy with {lmkSF} Note that the procedure above re-
quires a random sampling process, so the counterfactual network structure is not uniquely de-
termined. Therefore, we conduct the sampling one hundred times and generate one hundred
counterfactual network structures, then calculate the associated one hundred equilibrium
outcomes. We report the sample mean of these outcomes hereafter. In Appendix D.2, we
present the standard deviation, minimum value, and maximum value of each outcome, which
shows quite small variation among samples and supports the robustness of our implications.

5.3.1 Macroeconomic Relevance of the Friend-of-a-Friend Effect

First, we examine the direct impact of the FoF effect on macroeconomic variables. Table
3 shows percentage changes in key variables for the counterfactual (CF) economy without
FoF, compared to the baseline. The clustering coefficient is the average of the undirected
local clustering coefficient introduced in Section 2. The results highlight the macroeconomic
importance of the FoF effect: without FoF, the number of links decreases by 1.1%, the global
clustering coefficient declines by 13.7%, and welfare drops by 0.58%. Given that the average

22This assumption finds strong justification in the production network data. The sample comprises 8,142
firms, implying 66,284,022 potential directed links. Given 28,106 links that existed in 2014 (¢ = 0), the
number of potential links that could be formed in 2015 (¢t = 1) is 66,255,916. As only 1,732 new links
were actually created among these potential pairs, the 'rare-event’ interpretation for link creation is highly
applicable.

ZRegarding the value of 3, we use the baseline estimated value of 1.56 in Model 4 of Table 1, which is
close to the estimated value of 1.61 for only manufacturing sectors.

24Consistent with the model’s two-period timing (t = 0,1), we shut down FoF only on the 2014-2015
formation margin, leaving legacy links intact. This corresponds to a one-year intervention; in a long-run
steady state without FoF in the real economy, macro impacts would be larger.
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annual growth rate of real GDP in Japan from 2000 to 2024 is 0.70%,%® the aggregate effect
of this mechanism is substantial.

Number of Links Clustering Coefficient U
CF -1.1 -13.7 -0.58

Table 3: Aggregate Impact of Removing the Friend-of-a-Friend (FoF) Effect: % changes to
the baseline

To investigate the mechanism behind the welfare change, we develop Proposition 1, which
decomposes welfare changes due to a change in the network structure under the assumption
of # = 1 (Cobb-Douglas). To handle the discrete nature of link deletions, we exploit char-
acteristics of the logarithmic mean without relying on differential calculus, following Sato
(1976) and Vartia (1976). The proof is in Appendix A.2.

\
Proposition 1 (Decomposition of change in U): Suppose # = 1. When the network

structure changes and supplier sets slightly decrease from {S;}; to {S;}, using household

L
p;T;

expenditure share w; and input expenditure share [13 = , the welfare change can be

iYi
approximately decomposed based on the change in Network Productivity ®; as follows.

AU 1 AD;
= By — 5.1
ieN

A®; y _AD,

L= — A? AL 5.2
3, 2 A A T, (5.2)

JES\S! JESINS;
Firm Lz\r/ Effect Spillov?ag Effect
_ /

The proposition is intuitive. The first equation (5.1) implies that the welfare change is driven
by changes in firm productivity, weighted by the household’s expenditure share. The second
equation (5.2) illustrates how changes in firm productivity are determined. The first term
captures the direct effect of supplier losses on productivity. In a love-of-variety structure, the
loss of a supplier reduces productivity according to its importance. The second term reflects
the indirect network effect of the productivity decline. If a firm’s productivity decreases, the
decline propagates to its buyers through production networks, leading to further spread. In
this way, changes in productivity are characterized by the fixed point in (5.2).

Table 4 shows the decomposition. It emphasizes the significance of both channels: the
direct effect from supplier losses and the indirect spillover through production networks.
This suggests that not only do firms benefit directly from the FoF effect by gaining more
partners, but also their (indirect) partners gain from the FoF effect.

%5See https://data.imf.org/en/Datasets.
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U  Firm LoV Spillover
CF -0.58 -0.27 -0.32

Table 4: Decomposition of the Aggregate Welfare Loss from Removing FoF: % change

5.3.2 Friend-of-a-Friend Effect in Shock Propagation

Next, we study how the FoF effect changes the propagation of idiosyncratic productivity
shocks. Changes in the production network affect not only the level of aggregate welfare
discussed in Section 5.3.1, but also the mapping from firm-level shocks to aggregate outcomes,
because they modify each firm’s topological position in the network and thus its influence
on others.

To quantify this channel, we compare the welfare response to the same productivity shock
under two network structures: the baseline network and the counterfactual (CF) network
without FoF-induced links. We first partition firms into four (possibly overlapping) groups
G C N according to how their topological position changes when we remove the FoF effect:
(i) buyer-loss firms (those that lose buyers in CF), (ii) supplier-loss firms (those that lose
suppliers), (iii) FoF-intermediary firms (common partners for links that disappear in CF),
and (iv) others, i.e., firms outside groups (i)—(iii).

For each group G C N, we conduct the following experiment. Under each network
structure, CF and the baseline, we increase the fundamental productivity of all firms in G
by 10 percent, holding the productivity of all other firms fixed, and compute the associated
welfare response. Let

AQUNetwork — U(z])\/etwork . U*Netwoﬂc7 Network c {base, CF}J

shack:g

denote the welfare change under a Network induced by this shock. We summarize the
difference in welfare responses by the Welfare Response Gap (WRG) for group G, defined as

G7CF CF

WRG(G) = S G/U"

AgUbase<g)/Ubase
A positive (negative) value of WRG(G) indicates that shocks to firms in group G have stronger
(weaker) aggregate consequences in the CF network, meaning that these firms become more
(less) influential in the transmission of productivity shocks once the FoF effect is removed.
Table 5 shows the WRG values for each shocked group as a percentage. First, the
results for groups (i) and (ii) indicate that firms experiencing buyer-loss and supplier-loss
transmit positive productivity shocks less strongly under CF compared to the baseline. By
losing partners, these firms become less influential in CF, meaning shocks to them have less
impact on overall welfare. In contrast, the result for group (iv) suggests that firms that are
neither link-loss firms nor FoF intermediaries become relatively more important in CF, as
the significance shifts away from link-loss firms. The result for group (iii) indicates that FoF
intermediaries face two opposing forces with minimal overall change.?® On the one hand,

26Table D.7 shows that the standard deviation of the moment across random samples of links used to
build counterfactual networks is 0.1. This aligns with the reported Welfare Response Gap (average across
the samples) in Table 5, indicating that the WRG for FoF intermediaries is not significantly different from
0.
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they lose their significance because their partners, link-loss firms, also become less important.
Through production networks, the change in the importance of these partners affects the
FoF intermediaries. On the other hand, they benefit from the reallocation of importance
away from the link-loss firms. These opposing effects cancel out, resulting in a negligible net
difference.

Shocked Group (i) Buyer-loss  (ii) Supplier-Loss  (iii) FoF Intermediaries (iv) Others
Welfare Response Gap -3.2 -1.4 -0.1 1.2

Table 5: Gap in the welfare responses (%) to the same productivity shock between CF and
baseline, by shocked group

To further characterize the Welfare Response Gap (WRG) metrics, we first develop an
aggregation framework that links micro-level productivity shocks to the aggregate welfare

response — under # = 1. This framework allows us to decompose the welfare impact into

direct and indirect channels. We then use this decomposition to analyze the WRG for each
shocked group. Unless otherwise noted, we use bold lowercase to denote column vectors
and bold uppercase to denote matrices, where rows represent buyers and columns represent
suppliers.

Using the household expenditure share vector w and the input expenditure share matrix
A, the welfare response to small shocks in each firm’s fundamental productivity is determined
as:

dU => A— 49 (5.3)

ieN ¢1

N
where the influence vector X' := ' (I — A) can be decomposed into the direct influence

vector (AP .= 1’ and the indirect influence vector (X¥rect)’ . Z A" as:

A= ADi’r‘ect + Alndirect' (54)

The derivation is provided in Appendix A.3.

Equation (5.3) illustrates how micro-level productivity shocks combine into the welfare
response. Unlike the traditional revenue-based Domar weight used under perfect competition
(Hulten, 1978; Acemoglu et al., 2012), the presence of markups in our model requires using
alternative weights, consistent with Baqaee and Farhi (2020).%"

The interpretation of the influence vector is straightforward. First, when a positive shock
to firm ¢’s fundamental productivity decreases its unit cost and price, it directly lowers the

Equation (5.3) is a special case of Theorem 1 in Baqaee and Farhi (2020). In their framework, the
change in the aggregate output (welfare) is measured by the sum of cost-based Domar weighted productivity
shocks and the allocative efficiency term. The cost-based Domar weights match our influence vector. The
allocative efficiency term reflects changes in the markup and allocation of primary factors. In our model,
these terms are zero because (i) the markup remains unchanged, (ii) labor is the sole primary factor, and
(iii) the elasticity of substitution between labor and the intermediate input bundle is one.)
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household price index based on the household expenditure share of good i (1;), as shown in
the direct influence vector in (5.4). At the same time, the lower price reduces input costs
for firm j, which buys from firm 7, according to i’s share in j’s input costs (A%). This cost

reduction then spreads through the supply chain network A and is eventually reflected in
the household price index, weighted by expenditure shares. The indirect effect is captured
by the indirect influence vector in (5.4), with the n-th power term representing the n-step
pass-through along production networks from the original shocks.

The aggregation framework utilizing the influence vector functions as a diagnostic tool
to understand the mechanisms behind the Welfare Response Gap (WRG), as we state in the
following proposition.

\
Proposition 2 (Decomposition of WRG): Suppose # = 1. The Welfare Response Gap

(WRG) for group G is decomposed using the influence vectors from the baseline economy
and those from the counterfactual economy as follows.

WRG(Q) _ Z [AiDirect,CF B )\iDirect, base] + Z |:>\i[ndi7“ect,CF i )\i[ndiTect, base:| /Z )\?ase

1€G i€G i€G

4 .

vV vV
Direct Channel Indirect Channel

(5.5)
\_ J
The proof is given in Appendix A.3.

Equation (5.5) breaks down WRG(G) into two components—the direct channel (the sum
of changes in direct weights for the shocked group G) and the indirect channel (the sum
of changes in indirect weights for the shocked group G), with a normalization term in the
denominator. This breakdown clarifies whether, given WRG(G), the change is due to firms
in the shocked group G altering their direct exposure to the household (direct channel) or
because they change their importance within the supply chain networks (indirect channel).

(i) Buyer-loss (ii) Supplier-Loss (iii) FoF (iv) Others
Direct Indirect Direct Indirect Direct Indirect Direct Indirect
WRG -0.26 -2.85 -0.88 -0.47 -0.02 -0.11 0.47 0.83

Table 6: Decomposition of Welfare Response Gap (WRG), by shocked group

Table 6 shows a breakdown of the Welfare Response Gap (WRG) for each shocked group
into the direct and indirect channels implied by Proposition 2. For buyer-loss firms, the
indirect channel predominantly drives the gap: although their household-expenditure share
remains relatively unchanged, once the FoF-generated buyers disappear in CF, productivity
shocks to these firms no longer spill over along downstream paths, significantly reducing
propagation. Conversely, firms experiencing supplier losses show substantial effects in both
channels: losing suppliers increases their unit costs, leading them to be replaced both by
households (reducing the direct weight) and by their buyers (diminishing pass-through at
the intensive margin). The ‘others’ category absorbs both of the influence transferred from
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link-loss firms.?® FoF intermediaries show a small net negative gap, consistent with offsetting
forces—reduced influence through neighbors’ diminished influence,? but partial reweighting
elsewhere.

6 Conclusion

This paper quantifies the friend-of-a-friend (FoF) effect in production networks and assesses
its macroeconomic relevance. Using firm-to-firm transaction data from Japan, we show that
production networks display high clustering together with strong geographic and sectoral
homophily. These patterns are consistent with FoF but cannot, by themselves, separate FoF
from proximity-driven link formation.

We then develop a general equilibrium model with endogenous network formation in
which suppliers face fixed costs of forming links and enjoy a discount in these costs when
they and a potential buyer share a common partner. Under a static-expectations assumption,
the model yields a dyad-level logit link formation equation with buyer and supplier fixed ef-
fects and dyad-level controls for sectoral and physical proximity. Applying a quadruple-based
conditional logit estimator, we find strong evidence of FoF: we estimate that sharing a com-
mon partner reduces effective link-formation costs by about 80%, a magnitude comparable to
a 1.75 standard deviation decrease in physical distance or a 1.5 standard deviation increase
in sectoral proximity. Controlling for homophily is crucial; failing to do so substantially
overestimates the FoF coefficient.

Embedding the estimated FoF parameter into a calibrated GE model for Japan’s 2015
manufacturing sector, we show that shutting down the FoF mechanism on the formation
margin decreases aggregate welfare by 0.6%, mainly because firms cannot produce goods
as efficiently due to having fewer suppliers. Decomposition results indicate that this de-
creased efficiency spreads across the network, amplifying the negative impact on welfare.
We also show that removing FoF changes the mapping from firm-level productivity shocks
to aggregate outcomes by reallocating influence across firms in the supply chain.

Beyond the specific FoF mechanism we study, our approach provides a portable way
to link micro-level estimates of network formation to macro-level outcomes. Applying this
framework to other relational channels, alternative institutional settings, and richer dynamic

281t can be rigorously demonstrated that the sum of both types of influence vectors across all firms remains
constant. Specifically, a decrease in the sum of an influence vector for one group of firms corresponds to
an increase in the sum for the other group. Clearly, the sum of the direct influence vector across firms
equals 1 because it represents the total household expenditure share. Regarding the sum of the indirect

o0 oo
influence vector across firms, from (A™®reety’ — ’lIJ/ZAn, we find that (A/m4reety1 = ’lI)/ZAn]. =
n=1 n=1

o0

1- 1- -
' Z(l —a)"1l = Yo'l = 7&, where the second equality reflects that the row sum of A is 1 — a.
a a

n=1
Under the Cobb-Douglas structure, a (1 — «) share of each firm’s total costs is allocated to intermediate
input.

29This spillover mechanism can be clearly shown using the influence vector. Since A satisfies X' =
-\ —1 ~
w’ (I — A) , we immediately obtain A = w + A'\. This implies that a firm’s influence is affected by the

weighted sum of the influence of its buyers.
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network environments is a promising direction for future research on the origins and conse-
quences of production networks.
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A Derivation

A.1 Quantitative Relevance of  for Sampling

We relate the estimated friend-of-a-friend coefficient 5 obtained in Section 4.2 to the con-
struction of counterfactual networks without this effect in Section 5.2.

Let Y7 denote the original realization of links, and Y7"“" the counterfactual realization of
the links. Suppose friend-of-a-friend does not influence link formation in the counterfactual
economy, with the same realization of the idiosyncratic cost shock £]. Clearly, this does not
affect link realization without common partners. Hence, we focus on the link realization
with a common partner.

Note that when § > 0, this must decrease the value of the latent variables in the logit
model (4.1) given the identical realization of the cost shock term (£/) in both the baseline
and counterfactual economies. Therefore, links that are not originally observed (Y;J =0)
should also not be realized in the counterfactual (Y7 OF — 0)

For links initially observed with common partners (Y7"“" = 1), we need to examine the
conditional probability of Y7/ bemg 1 given Y7 = 1, because the fact that Y77 = 1
alters the conditional dlstrlbutlon of & given YJ’ P=1 from the original (uncond1t10na1)
logistic distribution. For clarity, let XJ represent all the dependent variables except for the
common partner dummy and v denote its coefficients. Note that, by Bayes’ theorem, we
derive

Pr (Y79 = 1A = 11x7)

Pr (YOO = = 1,x7) = . . (A1)
Pr (Yg’CP - 1|Xg)
CPr(yX] > AB+X] > €]) (4.2)
B Pr(ﬁJrvaZeg) .
From 3 > 0, we have 7 X/ > &/ = B +~X/ > ¢]. Therefore, we have
. . Pr(yX] > ¢!
Pr (YZJ’CRCF = 1)y7" =1 XJ> (0 ) (A.3)

Pr(ﬂ+7XJ>8)

_ exp(’YXiJ) / exp(f + ’YXz'j) (A.4)
14+ exp(’yXij) 1+ exp(B + ’YXD' .

Given the fact that the number of new links is much smaller than all the possible links,**the
p(1X]) o exp(B XY

‘ 1+ exp(vX}) 1+ exp(8+7X7) ‘ '

v X7) are much smaller than one. Hence 1+exp(yX]) ~ 1 and 1 +exp(f+~X/) ~ 1, which

are very small, so exp(7X?) and exp(3 +

probabilities

30For the justification of this, see footnote??.
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implies

| | | j
Pr (Yg’CP’CF =1y = 1,Xg) __o0X) (A.5)
exp(8 +~7X7)
|
exp(f) (A.6)

Essentially, this is the same as the rare-disease approximation (e.g., Cornfield (1951)) in
epidemiology: when the outcome is rare, the odds ratio (A.5) closely approximates the
probability ratio (A.4).

A.2 Proof for Proposition 1

In this section, we show how to derive Proposition 1. For a generic equilibrium object, X
corresponds to the network structure {S;};, and X’ corresponds to {S;};. We denote the
difference X' — X as AX.

We define network productivity as follows.
P, =( (A7)

Then, from (3.6) and (3.7), we have

d; = (é)l_a T [; <1>j] a (A.8)

Taking logs of both sides, we have

1

log(®;) = (1 — o) log (%) +log(u' ™) + (1 — a)log LZ Qj] : (A.9)
j€sS;

We also have

)

log(®)) = (1 — o) log (i) +log(u'™7) + (1 — a)log Z . (A.10)

jeS!

Taking the difference, we have

log(®)) —log(®;) = (1 — ) | log Z ;| —log [Z CIDj] (A.11)
jes! €sS;
/ log [Zjesg CD;} — log [Zjesi CI>J}
=(l-a)| > ¥ -) o,

(A.12)
jES! JES: (Ejesg (I);‘ - Zjesi (I)J'>
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Since S, C §;, we have
D =D ei= > (-0 - D Dy (A.13)
jESZ{ JES; jES{ﬂSi ]ESl\S{

Therefore, we have

o (%> =-a) Z (@) — @) - Z D, o8 [Zje‘sg <I>;] ~log [Zjesi CDJ']

¢ JESINS; JESI\S] (ZjGS{ (I);' B ZJ'GSi cbj)
(A.14)
P! — O,
10g(1+l—z)=(1—0‘) Z Z
@i jESINS; EJGS CDJ jESI\S] ZJES
log [Z S{(I)} — log [Z s, (13}
% (Zq)j) JES; T JjeS: T (A15)
JES; (Zjesg ® — Ljes: @J)

With respect to the second term, we utilize the characteristics of the logarithmic mean
following Sato (1976) and Vartia (1976). Since log(z) is concave, for scalars a > b > 0, we
have

1 loga—1logh 1
- < < - A.16
a a—2b b ( )
—b
b. Al
Saz ~ loga —logb — (A17)
Therefore, for generic scalar variables a’, b > 0, we have
!/ /
/ a — Y
_— < . .
min{a’, b’} < oga —Togl = max{a’, 0’} (A.18)
Here, by substituting Z @’ into o’ and Z ®; into b', we have
jes] JES;
D est P = 2jes; @i
min Z@ Z@ < J€S; jes < max ZCD ZCD
]ES/ jES log [2]682 q);] - lOg [ZJGSZ ®]i| jesl ]ES
(A.19)

, we rewrite (A.15) as

> log [Zjesg (I’;] — log [Zje&- ‘I)j]

Letting ¥; = ®;
etting (Z J <Zj€32 (I);' - ZjESz' CI)J->

JES;

A®,
log <1+ 5 ) =, | Y il -y A (A.20)

JESINS; ; JESI\S!
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L .
where A7 := (1 — a)—=—2>—— is input expenditure share of supplier j’s good in buyer 4’s

Zj’esi ¢]l
production.
Note that from (A.19), we have
ZjeSi (I)j Zje.si (I)j

<v; <

) (A.21)

min {Zg‘esg 5,2 jes, (Dj} max {Zjes; D% > e, q)j}

By assuming Z <I>;- ~ Z ®; (i.e., the sum of suppliers’ network productivity of each firm
JES] JES;

do not change a lot), we have ¥; ~ 1 and finally obtain an approximated expression of the

changes in the network productivity.®!

8% v Ag%_ S AL (A.22)

0¥ j
jES{ﬂSi ]ESZ\S,:

We also have

1

T
Py =p [Z D, (A.23)
ieN
Taking logs of both sides, we have
1
log(Py) = log(p) + T log [Z @i] (A.24)
ieN
Then, we have

APy 1 D AP (A.25)

PH N 1—0 ZZ€N®Z
1 o, AP,
- i i (A.26)

AP 1 AP,
_ PH: 1Zwi @Z (A.27)
H g N 7
where w; := —— is the household expenditure share.
Ziex\f ®;
31When Z @’ differ from Z @, significantly, the second order term due to the covariance between 9;

jES; JES;
i A(I’j il . .. . . .
and Z Al 3. Z Al | in (A.20) becomes non-negligible. Similar discussion about the second

JESINS; T jesins]
term due to covariance of small changes can be found Baqaee and Farhi (2019).

31



Under the assumption that § =1,

[=wl+1I (A.28)
=wlL + Z(M — )Gy (A.29)
ieN
1
=wL + leZN(u - 1)awli (A.30)
_ <1+“;1) wl (A.31)

holds. Therefore, given that the wage is the numeraire (w = 1) and the labor supply is
inelastic in the model, we obtain

Al
— =0. A.32
- (A.32)
Then, we have
I
U=— A.33
o (A.33)
AU Al APy
= _ = _=~ A.34
U 1 Py (A-34)
APy
= ——. A.35
5 (4.35)
Therefore, we finally obtain
AU APH 1 AD;
- _ — i p—_ A.
U P = g 2 o, (4.36)
ieN
AD; s < AD;
i J Rt
wo- Ry AR o
JES\S! JESINS;
Firm LX/ Effect SpiHO\;B? Effect
A.3 Proof for Proposition 2
In this section, we show how to derive Proposition 2.
We define network productivity as follows.
®; =l (A.38)

Then, from (3.6) and (3.7), we have

®; = (%)H o LZ; @-] - (A.39)
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Taking logs of both sides, we have

1
log(®;) = (1 — o) log (5) +log(u' ™) + (1 — a)log [Z (I>j] : (A.40)
¢ €S;
Taking first order differentiation, we obtain
dd; do; < dD;
L= (0 —1)— Al =L A4l
5= 0D A (A1)
JES;
= D, - . . . .
where A} := (1 — a)z—q) is input expenditure share of supplier j’s good in buyer i’s
jES; 7
production. !
In a matrix form, we obtain
dd dp  ~d®
d® -\ ~1do
G —-n(1-4) = Ad
= 1) : (A.43)

We also have

T
Py =p [Z ®; (A.44)
ieN
Taking logs of both sides, we have
1
log(Pyg) = log(p) + T2 log [Z Q)i] (A.45)
ieN
Then, we have
—_— == Wy —— (A.46)
PH o—1 Y CDZ
where @; := ——— is the household expenditure share.
ZiEN ®;
Substituting the equation (A.43), in a matrix form, we obtain
dPy ~ ( 7\t do
St =i (1-A) = AAT
B, & (A.47)
Under the assumption that 6§ =1,
I =wL +11 (A.48)
—1
- <1 + & ) wl (A.49)
!



holds. Therefore, given that the wage is the numeraire (w = 1) and the labor supply is
inelastic in the model, we obtain

— Y A.
7 0 (A.50)
Then, we have
I
- A5l
U= 5 (A.51)
au dPy
— = ——. A.52
T P, (A.52)
Finally, we obtain
a -\ ~1d¢
= (I - A) P (A.53)
-1
By letting A" = w’ (I — A) , we have
dU do;
— =) \— A.54
T o

Furthermore, we can have the Neumann series of A under the condition that the spectral
radius of A is less than 1, which holds from the labor input share a > 0 in our model.
(i.e., the pass-through of the productivity change in suppliers is smaller than 1 due to the
existence of the other inputs, labor.)

N\ -1
N =@ (I - A) (A.55)
vy (1 +) A”) (A.56)
n=1
= +w') A (A57)
:)\D’LTECt, n=1
:Alndirect/
Therefore, we obtain

dU irec ndirec dgbl
W= 3 (et g ppnaey 201, (A58)

ieN ¢

and the equation (5.5) can be directly derived from this.
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B Algorithm

B.1 Backward and Forward Fixed Points

Given a production network {S;, B;}icnr, the price vector {(;}ien and the allocation vector
y; satisfy the following systems.

1
1-6 -9

aj; l—0o| 1-0
= [ a0 |3 <l,;,u<j) (B.1)

JES; )\k‘]
b= () U Y ()T AN (1-a) <5>9y~ (B.2)
i i PFinal ot aj \"k; P; ¢ J

Following the terminology of Bernard et al. (2022), we refer to (B.1) as the backward fixed
point (BFP), since it aggregates costs over upstream suppliers and determines the unit
cost of the downstream buyer, and to (B.2) as the forward fixed point (FFP), since it
aggregates demand downstream and determines the production of the upstream suppliers.
Following Lim (2018), Huneeus (2020), and Carvalho et al. (2021), we treat these mappings
as contraction mappings in the price and allocation vector, so simple fixed-point iteration
on {(;}; and {y;}; converges to the unique solution.

B.2 Solution Algorithm for Equilibrium Given Networks

Given the characterization in Section B.1, the fixed-network equilibrium for a production
network {S;, B; }icn is obtained by solving the backward and forward fixed points once at an
arbitrary scale and then rescaling quantities to satisfy the labor-market clearing condition
(3.14). Because technologies are constant returns to scale and preferences are homothetic,
once unit costs and price indices are determined, the forward system (B.2) is linear in
aggregate demand U: all real quantities are homogeneous of degree one in U, while prices
are invariant to U.

1. Normalize the wage to w = 1 and solve the backward fixed point (B.1) to obtain unit
costs {G};, firm prices p; = pu¢;, and the associated price indices (P; and PF™me!).

2. Fix an arbitrary normalization of aggregate demand, e.g. U = 1, and solve the for-
ward fixed point (B.2) for outputs {y;(1)};. Using firms’ cost-minimization conditions,
compute the implied firm-level labor demands {/;(1)}; and aggregate labor demand
LY(1) = (1),

ieN

3. By homogeneity, for any U we have y;(U) = Uy;(1) and L*(U) = U L%1). Given
aggregate labor supply L, set U* = L/L%(1) and obtain the equilibrium allocation by
rescaling all quantity variables, e.g. y7 = U*y;(1) and [} = U*l;(1), with an analogous
scaling for intermediate inputs and consumption. Prices and unit costs remain those
computed in step 1.
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B.3 Sampling Procedure

To avoid the computational burden associated with the very large sample size, we follow the
sampling procedure proposed by Izumi et al. (2023). Figure B.1 illustrates quadruples with
Z,=1and Z, = —1, respectively.

0.

Construct a dyadic dataset that consists of buyer—supplier pairs (¢,7) at ¢ = 1 such
that the link between ¢ and 7 does not exist at ¢ = 0.

. From the N newly formed trading pairs at ¢t = 1, draw N quadruples o = {iy, is; j1, jo }-

Keep the quadruples satisfying

e 7, =1 (alink between buyer i; and supplier j; is realized, whereas a link between
buyer 7; and supplier js is not; similarly, a link between buyer 75 and supplier js
is realized, whereas a link between buyer i, and supplier j; is not),

e neither a link between buyer ¢; and supplier j; nor a link between buyer i, and
supplier j; existed at ¢t = 0.

Repeat steps 1-2 until N quadruples are collected.

Duplicate these N quadruples (with Z, = 1) and swap j; and j, within each duplicate
to construct N quadruples with Z, = —1.

o = {i1,i2;J1,J2} o' = {i'y,i'2j'1,J'2}
Zy =1 Zy =1

Figure B.1: Visualization of Quadruples for Conditional Logit Estimation
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C Data

C.1 Summary Statistics

Number of Suppliers Number of Buyers
Existing New Dropped Existing New Dropped
Mean 6.37 0.57 0.47 6.70 0.61 0.50
SD 40.92 3.56 3.48 41.57 3.51 2.52
Mean (log) 1.14 0.24 0.20 1.19 0.27 0.23
SD (log) 0.95 0.49 0.44 0.96 0.50 0.47

Table C.1: Firm-Level Summary Statistics of Transaction Links (2015)

Number of Suppliers Number of Buyers

Existing New Dropped Existing New Dropped
2008 5.70 0.79 0.56 6.40 0.91 0.63
2009 577 0.78 0.57 6.45 0.84 0.62
2010 5.83 0.73 0.53 6.47 0.79 0.58
2011 6.10 0.67 0.51 6.50 0.72 0.55
2012 6.14 0.64 0.56 6.53 0.68 0.60
2013 5.98 0.64 0.52 6.57 0.69 0.55
2014 6.29 0.60 0.48 6.68 0.64 0.51
2015 6.37 0.57 0.47 6.70 0.61 0.50
2016 6.41 0.56 0.49 6.72 0.59 0.49
2017 6.50 0.55 0.46 6.79 0.58 0.48
2018 6.58 0.54 0.45 6.82 0.56 0.47
2019 6.67 0.44 0.42 6.87 0.46 0.44
2020 6.72 0.44 0.45 6.90 0.46 0.46
2021 7.19 0.59 0.59 7.54 0.59 0.60

Table C.2: Yearly Averages for Firm-Level Link Dynamics
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Number of Suppliers Number of Buyers
Existing New Dropped Existing New Dropped
Full Sample 6.37 0.57 0.47 6.70 0.61 0.50
Manufacturing 851 0.72 0.66 8.97 0.70 0.63

Table C.3: Comparison of Firm-Level Link Dynamics: Full Sample vs. Manufacturing Sector
(2015)
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D Robustness Checks

D.1 Robustness to Sample Selection

In this section, we conduct a series of robustness checks. First, we demonstrate the robustness
of the empirical findings in Section 4.2. Table D.1 reports the estimation results excluding
firms in the financial sector. Table D.2 presents the results when links associated with
capital (equity) relationships are excluded. Table D.3 shows the results for manufacturing
firms only. Figure D.1 displays the estimation results for the baseline model (Model 4) across
alternative sampling years from 2008 to 2020, with the 95% confidence interval indicated by
the shaded region. The robustness of the estimation results supports the presence of a
pervasive friend-of-a-friend mechanism in the link-formation process of production networks.

Second, Table D.4 demonstrates the robustness of the macroeconomic relevance of FoF
analyzed in Section 5. We conduct the same exercise as in that section using alternative
sample periods and report the same moments as in Table 3. The stability of the reported
moments across years underscores the macroeconomic importance of FoF.

Model 1 Model 2 Model 3 Model 4

Common Partner 2.54 1.87 2.29 1.52
(0.03) (0.04) (0.04) (0.05)

Physical Distance (log) -0.78 -0.79
(0.01) (0.01)

Sectoral Proximity (log) 0.48 0.50
(0.007) (0.01)

Supplier FE Yes Yes Yes Yes
Buyer FE Yes Yes Yes Yes

Table D.1: Estimation results for dyad-level logit model excluding financial sectors, 2015

Model 1 Model 2 Model 3 Model 4

Common Partner 2.50 1.84 2.25 1.48
(0.03) (0.05) (0.04) (0.05)

Physical Distance (log) -0.76 -0.77
(0.01) (0.01)

Sectoral Proximity (log) 0.49 0.52
(0.006) (0.02)

Supplier FE Yes Yes Yes Yes
Buyer FE Yes Yes Yes Yes

Table D.2: Estimation results for dyad-level logit model excluding the links associated with
capital relationships, 2015
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Model 1 Model 2 Model 3 Model 4

Common Partner 1.90 1.76 1.73 1.60
(0.43) (0.58) (0.46) (0.62)

Physical Distance (log) -0.64 -0.68
(0.16) (0.22)

Sectoral Proximity (log) 0.51 0.56
(0.14) (0.19)

Supplier FE Yes Yes Yes Yes
Buyer FE Yes Yes Yes Yes

Table D.3: Estimation results for dyad-level logit model only for manufacturing sectors, 2015

Estimation (Model 4) with Several Sampling Years

2 - -
——Common partner
1r —=—Physical Distance (log) T
Sectoral Proximity (log)

Coefficient
(e
i

U R R N O S N

VAN NSO

R M
Year

Figure D.1: Stability of Estimated Coefficients (Model 4) Across Different Sampl Years
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Year Number of Links Clustering Coefficient U

2009 -2.0 -17.7 -2.37
2010 -1.7 -15.0 -0.96
2011 -1.8 -15.5 -1.37
2012 -1.8 -13.9 -2.22
2013 -1.7 -15.5 -1.29
2014 -1.1 -8.8 -0.79
2015 -1.1 -13.7 -0.58
2016 -1.1 -10.5 -0.60
2017 -1.3 -11.1 -0.77
2018 -1.0 -9.8 -0.39
2019 -0.9 -10.1 -0.50
2020 -0.8 -8.9 -0.46

Table D.4: Stability of Macroeconomic Relevance of FoF: Counterfactual (no FoF) vs. base-
line (% changes) by Year
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D.2 Effect of the Random Sampling on the Reported Moments

In this section, we assess the variation caused by sampling in the reported moments from
Sections 2.2 and 5. Since both the random network in Section 2.2 and the counterfactual
network without the friend-of-a-friend effect in Section 5 depend on random sampling, the
resulting moments can differ, which may impact reproducibility. We address this issue by
providing summary statistics across multiple random draws, demonstrating that the mo-
ments are highly consistent.

Table D.5 reports summary statistics for the measures in Section 2 across 10 random
samples (degree-preserving randomization; Maslov and Sneppen (2002)). Tables D.6 report
summary statistics for changes in aggregate variables in the counterfactual economy without
the friend-of-a-friend effect (corresponding to Table 3 and Table 4), based on 100 random
samples following Section 5.2. All reported moments have small coefficients of variation, and
the implications in the main results hold at both their minimum and maximum values. Table
D.7 and Table D.8 report summary statistics for shock propagation analysis (corresponding
to Table 5 and Table 6). As discussed in the main body of the paper, the standard deviation
of the moments related to group (iii), FoF intermediaries, is comparable to its mean. This
implies these moments are not significantly different from O.

N Mean SD Min Max

Global Clustering Coefficient 10 0.031 0.0003 0.031 0.032
Average Physical Distance 10 5.10 0.002 5.10 5.10

Average Sectoral Proximity 10 0.017 0.0001 0.017 0.017

Table D.5: Robustness of Random Network Benchmarks to Sampling Variation in Section
2.2

N Mean SD Min Max

Link Density 100 -1.1  0.007 -1.2 -1.1
Clustering 100 -13.7 0.92 -15.9 -11.0
U 100 -0.58 0.047 -0.68 -0.46
Firm LoV ~ 100 -0.27 0.029 -0.32 -0.19
Spillover 100 -0.32 0.028 -0.37 -0.25

Table D.6: Robustness of Aggregate Implications in Table 3 and Table 4 to Sampling Vari-
ation
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N Mean SD Min Max

(i) Buyer-loss 100 -3.177 0.336 -3.877 -2.227
(i) Supplier-loss 100 -1.356 0.170 -1.684 -0.910
(iii) FoF Intermediaries 100 -0.126 0.106 -0.390 0.168
(iv) Others 100 1.227 0.114 0945 1.455

Table D.7: Robustness of WRG in Table 5 to Sampling Variation

N Mean SD Min Max
Direct 100 -0.257 0.115 -0.495 -0.009
Indirect 100 -2.852 0.281 -3.486 -2.071
Direct 100 -0.880 0.112 -1.124 -0.617
Indirect 100 -0.466 0.096 -0.666 -0.245
Direct 100 -0.021 0.065 -0.214 0.157
Indirect 100 -0.115 0.093 -0.322 0.103
Direct 100 0.471 0.054 0.347 0.584
Indirect 100 0.831 0.073 0.655 0.977

(i) Buyer-loss

(i) Supplier-loss

(iii) FoF Intermediaries

(iv) Others

Table D.8: Robustness of WRG Direct/Indirect Channels in Table 6 to Sampling Variation
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D.3 Non-targeted Moment in the Calibrated Model

As a validation check, we investigate the binned scatter plots of the log of sales and profit
of the calibrated model in Section 5 and the data. While they are non-targeted moments,
we observe good fits between the model moments and the data.
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Figure D.2: Sales (Log): Model vs. Data
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Figure D.3: Profit (Log): Model vs. Data
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E Heterogeneity Analysis

This section examines how the FoF effect in our baseline dyad-level logit estimation (4.1)
varies across economic and topological dimensions. We measure all heterogeneity shifters at
t = 0 and include the same set of controls (log distance, sectoral proximity, and two-way
fixed effects) to preserve the model’s timing logic and ensure comparability with the main
estimates.

E.1 Firm Size

A large body of research indicates that the FoF mechanism interacts with firm size (Ravasz
and Barabasi, 2003; Kozitsin et al., 2023; Manova et al., 2025), which motivates including a
size-contingent FoF term instead of assuming homogeneity. We proxy the size of potential
buyer ¢ by the number of suppliers (#supplier;), and the size of potential supplier j by
the number of buyers (#buyer;), summarizing both with their mean-centered log sum as
kI = log(#supplier; +1) +log(#buyer; + 1) — (log(#supplier; + 1) 4 log(#buyer; + 1)).%*> We
then estimate an extended version of the baseline dyad-level logit specification (4.1):

Yij’1 =1 {B X C’ommonPartnerZ’O + Beross X C’ommonPartnerZ’O X kf’o

+ Controls + &' > 0}, (E.1)

where the C'ontrols term includes all the controls (log distance, sectoral proximity, and the
two-way fixed effects) used in the baseline.*® The coefficient of interest is Suross, and if it is
positive (negative), larger (smaller) firms benefit more from FoF.

Table E.1 reports the estimation results using several samples for a robustness check,
following Appendix D. We find a strong negative size gradient in the FoF effect. The coef-
ficient on Common Partner x Firm Size is approximately -0.4, which is comparable to the
coefficient on Common Partner, given that the standard deviation of &/ is around 1.97. This
pattern remains when excluding firms in financial sectors or links with capital relationships,
providing robust evidence that FoF is more helpful to small firms; for large pairs, alternative
search channels or internal capabilities likely substitute for the FoF effect.

E.2 Number of Common Partners

Applied network studies often argue that while additional common partners increase the
likelihood of link formation, their marginal contribution quickly declines (Snijders et al.,
2006; Arora and Osadchiy, 2025). To quantify the speed of this saturation within our iden-
tification strategy, we use the geometrically weighted edgewise shared partner (GWESP)
kernel, following the literature on exponential random graph models (ERGM) (Wasserman
and Pattison, 1996; Snijders et al., 2006; Hunter, 2007).

32 Adding 1 prevents taking the log of zero.

33We do not include the first-order terms of the size effects kf = log(# supplier;) + log(#buyer;) since the

Buyer
%

Supplier

buyer fixed effect « absorbs log(#supplier;), and the supplier fixed effect « j

absorbs log(#buyer; ).

45



Baseline Excl. Financial Sector Excl. Capital Links

(1) (2) (3)

Common Partner 2.430 2.409 2.411
(0.096) (0.109) (0.104)
Common Partner Firm Size  -0.416 -0.409 -0.418
(0.032) (0.031) (0.035)
Physical Distance (log) -0.739 -0.746 -0.740
(0.016) (0.014) (0.016)
Sectoral Proximity (log) 0.476 0.476 0.473
(0.016) (0.017) (0.016)
Supplier FE Yes Yes Yes
Buyer FE Yes Yes Yes

Table E.1: Estimation results for dyad-level logit model with size heterogeneity across base-
line and subsamples

Let nf be the logarithm of the number of common partners between buyer ¢ and supplier
j. Then, using a parameter ¢, the GWESP-type kernel is defined as

=—. E.2

1—e? (E2)
Although in our estimation nZ is a continuous log measure, it is useful to recall the behavior
of this kernel when applied directly to an integer count. If we let n denote an integer and
evaluate gs(n) at that integer, we obtain

n

1 —e (s
T -2 (E3)

s=1

which makes clear that ¢ governs how quickly the marginal effect of additional (common-
partner) units declines: a larger ¢ implies a faster geometric decay in the incremental con-
tribution of extra common partners. The same interpretation carries over when we apply
gs(+) to the log number of common partners.

Using this, we estimate equation (E.4) while accounting for the heterogeneity in firm size.
Note that since a large number of common partners between a supplier and a buyer directly
suggests that both have many partners, ignoring the heterogeneity due to firm size when
estimating the effect of the number of common partners results in a significant downward
bias. To avoid this, we consider both effects simultaneously.?*

Y/t =1 {B x 96 (n7°) + Beross X go(n?°) x kO + Controls + e > 0} (E.4)

Since we cannot directly estimate ¢ in a standard logit, we perform a grid search over ¢ that
minimizes AIC following Diessner et al. (2023). *°

34The same reasoning indicates an upward bias in the estimate in (E.1). This suggests that the true
heterogeneity due to firm size is more negative, which does not alter the conclusion above.

35For each ¢, we estimate equation (E.4) fixing ¢ and compute the AIC of the model. Then, we compare
the various AICs corresponding to each ¢ and select g?) that minimizes AIC.
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Table E.2 reports the estimation results. Our GWESP estimates indicate early conver-
gence in the marginal contribution of shared partners. The GWESP decay ¢ = 0.9 implies
that each +1 log-unit increase in the number of common partners results in only e % ~ 0.41
of the previous marginal gain. Therefore, once initial trust or information barriers are over-
come, additional overlaps contribute relatively little.

Baseline Excl. Financial Sector Excl. Capital Links

(1) (2) (3)

Hyperparameter:

o) 0.899 0.907 0.870
(0.086) (0.087) (0.089)

Coeflicients:

ge(n) 2.286 2.273 2.015
(0.091) (0.097) (0.095)

ge(n)x Firm Size -0.402 -0.397 -0.374
(0.025) (0.025) (0.028)

Physical Distance (log) -0.741 -0.748 -0.742
(0.016) (0.015) (0.015)

Sectoral Proximity (log)  0.472 0.472 0.478
(0.016) (0.017) (0.015)

Supplier FE Yes Yes Yes

Buyer FE Yes Yes Yes

Table E.2: Estimation results for dyad-level logit model with a geometrically weighted edge-
wise shared partner (GWESP) kernel across baseline and subsamples

E.3 Position of Common Partners (Directed Motifs)

Prior evidence shows that the topological location of common partners (directed motifs)
provides information about link-formation patterns. (Romero and Kleinberg, 2010; Yin et al.,
2020; Di Vece et al., 2024) To evaluate the heterogeneity caused by different topological
positions of common partners in our framework, we first categorize common partners for
buyer ¢ and supplier j into four groups: common supplier (CS) to both i and j, common
buyer (CB) of both, intermediary-forward (IF), which is a buyer of supplier j and a supplier
of buyer 4, and intermediary-reverse (IR), which is a supplier of supplier j and a buyer of
buyer i. For each position € {CS,CB, IF, IR}, we define the share within the (classified)
common partner set as:

J
Sszosition = J #jC(Pi’pOSition J J (E5>
7 #CF)’L',CS + #C‘Pi,CB + #CR,IF + #C‘Pi,IR

36Since a common partner can be both a common supplier and a common buyer at the same time, the
total number of classified common partners may exceed the total number of common partners.
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so that the shares sum to one, thereby isolating compositional differences and netting out
the effect of the number of (classified) common partners. Then, we estimate

Y;j’l =1 {/805557’35 + ﬁCBSZ{’g«B + BIFSZJ:?F + BIRSZ’?R + Controls + Eg’l > O} . (EG)

Table E.3 presents the estimation results. Breaking down by directed motifs shows that
the strongest FoF effect occurs when the common partner buys from the potential supplier
j and sells to the potential buyer i (intermediary-forward (IF)): the IF coefficient is 1.69,
higher than CC (1.43), IR (1.42), and CS (0.46). A natural interpretation is that IF captures
technological relatedness beyond our sectoral proximity measure: when the common partner
k is IF, the potential supplier j already produces an intermediate input good that the
potential buyer 7 indirectly uses through k. This result indicates a limitation of our measure
of technological proximity.

Baseline Excl. Financial Sector Excl. Capital Links

(1) (2) (3)

Share of CS 0.463 0.542 0.412
(0.236) (0.202) (0.220)
Share of CB 1.429 1.448 1.228
(0.093) (0.093) (0.093)
Share of IF 1.690 1.727 1.393
(0.089) (0.091) (0.087)
Share of IR 1.420 1.381 1.095
(0.089) (0.085) (0.089)
Physical Distance (log) -0.782 -0.800 -0.784
(0.011) (0.012) (0.012)
Sectoral Proximity (log)  0.525 0.508 0.527
(0.011) (0.012) (0.012)
Supplier FE Yes Yes Yes
Buyer FE Yes Yes Yes

Table E.3: Estimation results for dyad-level logit model with directional heterogeneity across
baseline and subsamples
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