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Abstract

We examine the implications of virus mutation for optimal lockdown policy in an epi-

macro model. We consider three ways of modelling virus mutation—one deterministic

setup and two stochastic setups featuring a two-state and three-state Markov process.

We find that the effects of virus mutation are asymmetric. In particular, a future re-

duction in the transmission rate increases lockdown intensity by more than a future

rise in the transmission rate lowers it. As a corollary to this asymmetry, an increase

in uncertainty about future mutation is non-neutral and reduces lockdown intensity

under the optimal policy.
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1 Introduction

As with any infectious disease, SARS-CoV-2 has changed its virus properties over the course

of the COVID-19 pandemic. Since late 2020 to late 2021, several new variants emerged

(alpha, delta, and omicron variants), each with distinct characteristics in terms of the trans-

mission rate, severity rate, and fatality rate. These variants often caused new infection

waves, forcing the governments to adopt their policies taking into account the variant’s new

virus properties.

In this paper, we examine the implications of virus mutation for optimal lockdown policy.

We conduct three distinct exercises. In the first exercise, we consider a model in which the

path of the transmission rate is deterministic, but the rate is not constant: it rises or declines

at a known future date. In the second exercise, we consider a model in which the transmission

rate is stochastic and follows a two-state Markov process with an absorbing state. Finally,

in the final exercise, we consider a model in which the transmission rate follows a three-state

Markov process to examine the effect of mutation uncertainty. In the main body of the

paper, we focus on the transmission rate and point out several key takeaways. However, all

the key takeaways are robust to two other parameters related to virus properties, the fatality

rate and the recovery rate, as discussed in the Appendix B.

In the first exercise using a deterministic model, we find that the effect of a future change

in the transmission rate on the optimal lockdown policy is asymmetric. If the transmission

rate is anticipated to rise in the future, it is optimal for the government to impose a less

stringent lockdown than if the transmission rate is constant. By imposing a less stringent

lockdown, the government could mitigate the decline in economic activities now and reduce

the number of susceptible individuals before the transmission rate increases. If the transmis-

sion rate is anticipated to decline in the future, it is optimal for the government to impose

a more stringent lockdown than if the transmission rate is constant. Thus, the effects of a

decline or rise in the future transmission rate are qualitatively symmetric. However, we find

that they are quantitatively asymmetric: that is, a decline in the future transmission rate

increases lockdown intensity by more than the rise in the future transmission rate of the same

magnitude. Intuitively, this asymmetry arises because of the zero lower bound constraint on

lockdown intensity: There is a limit to which a future decline in the transmission rate can

reduce lockdown intensity because lockdown intensity cannot fall below zero.

In the second exercise using a model in which the transmission rate follows a two-state

Markov process, we find a similar asymmetry in the effects of a possible future change in the

transmission rate. Like in the deterministic model, it is optimal for the government to impose

less (more) stringent lockdown if the transmission rate can rise (decline) in the future than if
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the transmission rate is constant. However, the nature of asymmetry somewhat differs from

that in the deterministic model used for the first exercise.

In the third exercise based on the model in which the transmission rate follows a three-

state Markov process, we examine the effect of mutation uncertainty by comparing the

optimal policy in this model with that in the model with a constant transmission rate.

Reflecting the asymmetric effects of optimal lockdown intensity, we find that the effect of

uncertainty is non-neutral. In particular, we find that it is optimal for the government to

impose a more stringent lockdown in the presence of uncertainty.

Our paper builds on the literature analyzing optimal lockdown policy in epi-maco models.

Though the analysis of epi-macro models predates the COVID-19 pandemic, this literature

expanded during the COVID-19 crisis. Examples include Acemoglu et al. (2021), Alvarez

et al. (2021), Berger et al. (2022), Chari et al. (2021), Eichenbaum et al. (2021), Farboodi

et al. (2021), Fu et al. (2022), Glover et al. (2022), Gonzalez-Eiras and Niepelt (2025), Pigu-

illem and Shi (2022) Rachel (2026), among many others. This literature has largely focused

on a deterministic environment with constant parameter values, except for the possibility of

vaccine or treatment arrival that would practically end the pandemic. Our contribution is

to examine the implications for the optimal policy of virus mutation that would discretely

change parameters governing the virus characteristics.

Our first and second analyses build on existing analyses mentioned above that examine

how the expectation of vaccine or treatment arrival in the future affects current lockdown

policy. A special case of our analyses in which the transmission rate declines to zero (or the

recovery rate rises to infinity) at some point in the future would correspond to the analysis

in the literature in which vaccines (or treatment) arrive at some point in the future and their

efficacy is perfect. See Acemoglu et al. (2020), Assenza et al. (2021), Bodenstein et al. (2022),

Boppart et al. (2025), Eichenbaum et al. (2021), Garriga et al. (2022), Glover et al. (2023),

Jones et al. (2021), Makris and Toxvaerd (2020), among others, for this type of analysis. The

marginal contribution of our first and second analyses relative to these analyses is that we

point out the asymmetry in the effect of expected changes in the parameters governing virus

characteristics, which leads to non-neutrality of uncertainty found in our third exercise.1

Our third analysis on uncertainty based on a three-state Markov process builds on sev-

eral papers that explicitly consider either time-variation or uncertainty in the parameters

characterizing the virus. Barnett et al. (2023) allow for uncertainty in various parameters

of an epi-macro model and characterize max-min policy—robust policy in the language of

1Though not focus of our paper, our first and second analyses show that the effect of a future change in
the rate depends on whether you model it in a deterministic way or in a stochastic way using a two-state
Markov process. This result can be seen as another marginal contribution of our analysis relative to existing
studies.
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Hansen and Sargent—in it, finding that the government imposes more strict lockdowns un-

der parameter uncertainty. Our analysis differs from their work because we assume that the

government maximizes the expected value of welfare, as opposed to maximizing welfare un-

der the worst-case scenario, and consider a different shock structure. Bandyopadhyay et al.

(2021) study optimal lockdown policy in a model in which the government is uncertain about

the transmission rate and early lockdown has the benefit of promoting good habit formation

among citizens for social distancing, but has the cost of not being able to learn about the

transmission rate. Our paper differs from this paper in that we conduct the implication of

a specific type of parameter uncertainty—mutation uncertainty—in a standard framework

abstracting from habit formation and learning.

Federico and Ferrari (2021) study optimal lockdown policy in an epi-macro model in

which the transmission rate follows a stochastic diffusive process, finding that an increase in

the fluctuations of the transmission rate gives rise to a lockdown that begins earlier but is

diluted over a longer period of time. We consider an alternative shock structure intended to

capture uncertainty arising from virus mutation that occurs less frequently. Gollier (2020)

studies optimal lockdown policy in an exponential-decay model of infectious diseases and

shows that uncertainty about the reproduction number reduces the optimal initial rate of

confinement. We differ from this paper because we examine uncertainty in a more standard

SIRD model.

Finally, Prieur et al. (2024) study optimal lockdown and vaccination policy in an SIS

model in which there is uncertainty in both the timing and the size of a change in the trans-

mission rate, finding that uncertainty surrounding future mutation of the disease expedites

lockdown intervention whenever mutation increases contagiousness. Their work is closest

to ours in that they consider uncertainty arising from virus mutation. Our work differs

from theirs because we adopt an SIRD model, instead of an SIS model, and consider both

two-state and three-state Markov processes.

The rest of the paper is organized as follows. Section 2 presents the model, formulates

the government’s optimization problem, and discusses parameter values. Section 3 presents

the results. Section 4 concludes.

2 Model

2.1 SIRD Model with Production

We use an infinite-horizon SIRD model formulated in discrete time. In the deterministic

version of the model, we will drop the expectations operator from the model.

4



The dynamics of the SIRD model are given by the following equations:

EtSt+1 = St −Nt (1)

EtIt+1 = It +Nt −N IR
t −N ID

t (2)

EtRt+1 = Rt +N IR
t (3)

EtDt+1 = Dt +N ID
t (4)

N IR
t = γtIt (5)

N ID
t = δtIt (6)

POP = St + It +Rt +Dt. (7)

St, It, Rt, Dt denote the number of susceptible, infected, recovered, and deceased, respec-

tively. The flow variables Nt, N IR
t , and N ID

t are the number of newly infected, newly

recovered, and newly deceased between time t and time t + 1, respectively. Parameters γt

and δt denote recovery rate and death rate, respectively. The total population is a constant

denoted by POP . In the main body of the paper, we assume that γt and δt are constant

over time, which we denote by γ and δ. In the Appendix, we will consider models in which

either γt or δt is time-varying.

The matching function for new infections follows:

Nt =
1

POP
β̃t ItSt (8)

where

β̃t = βt(1− hαt)
2, (9)

and αt denotes lockdown intensity. βt and β̃t denote the transmission rate and the lockdown-

adjusted, respectively. h denotes lockdown effectiveness.

We assume that the output of the economy yt is determined by the following production

function:

yt = (1− αt) (St + ωIIt +Rt) (10)

where ωI denotes the productivity of infected workers.
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2.2 Government’s Optimization Problem

The government’s optimization problem is to choose a state-contingent sequence of lockdown

intensities {αt(β
t)}∞t=0 to maximize the social welfare:

max
{αt(βt)}∞t=0

E0

∞∑
t=0

ρt
(
yt(β

t)− χN ID
t (βt)

)
, (11)

subject to equations (1)–(10).2 ρ is the discount factor of the government. Following the

standard notation in modern macroeconomics, we use xt to denote the history of a random

variable x from time 0 to time t. When there is uncertainty, the optimal policy and allocations

under it are state-contingent sequences. In the objective function above, we made the state-

contingent nature of the solution explicit by explicitly stating that each variable at time t is

a function of the history of shocks up to time t.

2.3 Shock Processes

In all three exercises, the baseline shock process is a constant path. We compute the optimal

policy with virus mutation in three different ways, and contrast it with that under the

constant-path case.

In the first exercise, the transmission rate under virus mutation is deterministic, but

changes its value at a fixed date T . The change is anticipated by the government at the

beginning of time one. In the second exercise, the transmission rate follows a two-state

Markov process with an absorbing state. The transition matrix is given by:

Π2 =

[
1− p2 p2

0 1

]
(12)

where p2 denotes the probability of mutation for a two-state Markov process.

In the third exercise, the transmission rate follows a three-state Markov process with an

absorbing state. The three-state Markov process is symmetric. The probability of a rise in

the transmission rate is the same as that of a decline. The size of the rise is the same as

that of the decline. The transition matrix is given by:

Π3 =

 1 0 0

p3 1− 2p3 p3

0 0 1

 . (13)

2See Appendix A for details on the numerical methods used to solve the government’s optimization
problem.
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where p3 denotes the probability of mutation for a three-state Markov process.

In all three exercises, we consider both a rise and a decline in the transmission rate.

2.4 Parameter Values

We interpret a period in our model as a week. We set γ = 7/18. Together with δ = 0.01,

this implies an average infectious duration of 1/(γ + δ) weeks (about 18 days), consistent

with Eichenbaum et al. (2021). We set the mortality rate δ = 0.01. This value is higher than

the population-averaged infection mortality risk for associated with COVID-19, as reported

in Zhang and Nishiura (2023). We choose this higher number for the ease of exposition.

All of the key takeaways in our paper are robust to alternative fatality rates. The base

transmission rate (β) is set to one, so that the implied basic reproduction number is 2.5,

consistent with the Centers for Disease Control and Prevention (2021). We use the discount

factor ρ to 0.999 in Eichenbaum et al. (2021). We set χ to 1000 so that the implied value

of a statistical life in our model is consistent with the calibration target in Farboodi et al.

(2021). We set the probability of mutation as p2 = 0.025 or p3 = 0.0125, so the expected

duration until mutation is 40 weeks.

Table 1: Parameter Values

Parameter Description Value

POP Total population size 100
γ Recovery rate 7/18
δ Death rate 0.01
β Base transmission rate 1
ρ Discount factor for future costs 0.999
χ Cost weight for deaths relative to economic cost 1,000
h Lockdown effectiveness 1
ωI productivity of infected workers. 0.8
p2 The probability of mutation in the two-state Markov process 0.025
p3 The probability of mutation in the three-state Markov process 0.0125

Note: See Appendix C for robustness check regarding the productivity of infected workers, ωI .

3 Results

3.1 An Anticipated Change at a Fixed Date

In this exercise, we examine the implications of an anticipated future change in the trans-

mission rate for optimal lockdown policy. We do so by comparing (i) the economy with a
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constant transmission rate (the economy without mutation) and (ii) the economy in which

the transmission rate changes its value at a fixed period T (the economy with anticipated

mutation). We consider both an increase and a decrease in the transmission rate.

Figure 1 shows the results. In the figure, solid black lines show the economy without

mutation, whereas solid red and blue lines show the economy with an anticipated increase

and decrease in the transmission rate at time T , respectively.

Figure 1: Dynamics with and without an Anticipated Change at T = 40:
Transmission Rate (β)
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Note: The black line is the constant-β benchmark with β = 1.00. The red and blue lines are realizations
under an anticipated change in β, where agents expect β to remain at 1.00 until T = 40 and then permanently
switch to the high value (β = 1.50, red) or the low value (β = 0.50, blue). All simulations start from the
same initial condition and differ only in the anticipated change in β at T = 40.

In the economy without mutation, the government imposes lockdown from time 9 to

time 20 to mitigate the infection wave, as shown by the solid black line in the top left panel.

Comparing the solid black with red lines, we see that the anticipation of a future increase in

the transmission rate leads to a less stringent lockdown. If a second infection wave occurs

after the transmission rate increases, the cost of managing the pandemic becomes high. That

is, the government would need to impose a strict lockdown to contain the wave. To reduce

the possibility of the second infection wave, or the size of it if it occurs, the government

has an incentive to reduce the pool of susceptible persons at the time the transmission rate

increases. To achieve this, the government aims to reduce the severity of the lockdown during

the first wave of infection so that more people become infected before the transmission rate
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rises.

Comparing the solid black with blue lines, we see that the anticipation of a future decline

in the transmission rate leads to a more stringent lockdown. The logic is the opposite of

the other case. Once the transmission rate declines, the cost of managing the pandemic

becomes low. That is, the government would not need to impose strict lockdowns to control

the wave. Thus, the government has less incentive to reduce the pool of susceptible persons

before the transmission rate declines. To achieve that, the government would like to impose

stricter lockdowns. This result is consistent with the findings from the existing studies that

has studied the implication of the promise of vaccines on the optimal lockdown policy, such

as Acemoglu et al. (2020), Assenza et al. (2021), Boppart et al. (2025), Eichenbaum et al.

(2021), Garriga et al. (2022), and Glover et al. (2023).

From the figure, we see that the effects of an anticipated increase and decrease in the

transmission rate are asymmetric. In particular, an anticipated decrease in the transmission

rate increases the lockdown intensity by more than an anticipated increase in the transmission

rate reduces it. Intuitively, this asymmetry arises because of the zero lower bound constraint

on lockdown intensity: There is a limit to which a future decline in the transmission rate

can reduce lockdown intensity because lockdown intensity cannot fall below zero.

To further highlight the asymmetry, we plot how the path of lockdown intensity varies

with alternative shock sizes. In Figure 2, we show three alternative shock sizes. The left

(right) panel shows the path of optimal lockdown intensity when the shock size is smaller

(larger) than in the baseline. The middle panel is the same as in the baseline. As the

absolute size of the anticipated increase in the transmission rate becomes larger, the optimal

lockdown intensity declines in a relatively linear way. However, as the absolute size of the

anticipated decline in the transmission rate becomes larger, the optimal lockdown intensity

increases, but increases in a nonlinear manner.

To quantify the degree of asymmetry, Table 2 shows the cumulative lockdown intensity

for all cases considered in Figure 2. As the terminal β declines from the baseline value of

one, the cumulative lockdown intensity increases steeply. On the other hand, as the terminal

β increases from the baseline value of one, the cumulative lockdown intensity declines, but

by a smaller amount.
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Figure 2: Optimal Lockdown Policy under an Anticipated Change at T = 40:
Transmission Rate (β)—Alternative Shock Sizes—
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Note: This figure plots the simulated path of lockdown intensity (α) under a constant transmission rate β
and anticipated, permanent changes in β occurring at T = 40. In the benchmark (black solid line), β = 1.00
for all t. In the alternative scenarios, agents anticipate that β remains at 1.00 until T = 40 and then
permanently switches to a new level, as indicated in each panel’s legend. Panel (i) compares β : 1.00 → 0.75
(blue dashed) and β : 1.00 → 1.25 (red dashed); panel (ii) compares β : 1.00 → 0.50 (blue solid) and
β : 1.00 → 1.50 (red solid); panel (iii) compares β : 1.00 → 0.25 (blue dotted) and β : 1.00 → 1.75 (red
dotted). All simulations start from the same initial condition and differ only in the anticipated path of β.

Table 2: Cumulative Lockdown Intensity under an Anticipated Change at T = 40:
Transmission Rate (β)

β : 1.00 → 0.25 β : 1.00 → 0.50 β : 1.00 → 0.75 constant β β : 1.00 → 1.25 β : 1.00 → 1.50 β : 1.00 → 1.75

14.1 12.4 4.7 3.4 2.8 2.3 1.9

Note: This table reports cumulative lockdown intensity, defined as
∑

t αt over the sample period, under a
constant transmission rate β and six scenarios with an anticipated change in β at T = 40. In the benchmark,
β = 1.00 throughout. In the anticipated-change cases, β starts from 1.00 and, in the realization summarized
here, changes at T = 40 from 1.00 to 0.25, 0.50, 0.75, 1.25, 1.50, or 1.75 as indicated by the column headings;
after the change, β remains at the new level. All simulations start from the same initial condition and differ
only in the assumed path of β.

3.2 A Two-State Markov Process

In this exercise, we examine the implications of a possible future change in the transmission

rate for optimal lockdown policy. We do so by comparing (i) the economy with a constant

transmission rate (the economy without virus mutation) and (ii) the economy in which the

transmission rate follows a two-state Markov process with an absorbing state (the economy

with possible virus mutation).

Figure 3 shows the results. In the figure, solid black lines are for the economy without
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virus mutation, whereas solid red and blue lines are for the economy with possible virus

mutation—a rise and a decline in the transmission rate—respectively.

Figure 3: Dynamics with Constant-Parameter vs. Two-State Markov Process:
Transmission Rate (β)
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Note: The black line is the benchmark with constant β = 1.00. The red and blue lines are realizations under
a two-state Markov process for β in which β starts from 1.00 and, from T = 40, can switch to an alternative
(absorbing) state with per-period transition probability p2 = 0.025. In the realizations shown, the switch
occurs at T = 40, moving to the high state (β = 1.50, red) or the low state (β = 0.50, blue); after switching,
β remains at the new level.

Let us first discuss the economy with a possible increase in the transmission rate, as

shown by the red lines. As in the deterministic model with an increase in the transmission

rate at a fixed date, it is optimal for the government to impose less stringent lockdowns if

the transmission rate can increase in the future than otherwise.

Let us now discuss the economy with a possible decline in the transmission rate, as shown

by the blue line. As in the deterministic model with an decrease in the transmission rate

at a fixed date, it is optimal for the government to impose more stringent lockdowns if the

transmission rate can increase in the future than otherwise. However, the optimal lockdown

path is not uniformly higher than in the model without virus mutation over time. For

some time periods around the peak of the lockdown intensity in the model with a constant

transmission rate, the lockdown intensity is lower in the model with a possible decline in the

transmission rate than in the model without virus mutation.

To see the asymmetry from another perspective, we plot how the path of lockdown
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intensity varies with the size of unanticipated change. In Figure 4, we show the path of

optimal lockdown intensity under two different-sized shocks—one smaller and one larger—

in the left and right panels, respectively. The middle panel is for the baseline shock size.

As the absolute size of the anticipated increase in the transmission rate gets larger, the

optimal lockdown intensity declines in a relatively linear way. However, as the absolute

size of the anticipated decline in the transmission rate gets larger, the optimal lockdown

intensity increases in a nonlinear way. To quantify the degree of asymmetry, Table 3 shows

the cumulative lockdown intensity under these different shock sizes, as in Table 2.

The paths for future possible increases in the transmission rate in Figure 2 are quali-

tatively similar to those for the anticipated increase in the transmission rate in Figure 1.

Interestingly, the paths for future possible declines in the transmission rate in Figure 2 are

qualitatively different from those for the anticipated decline in the transmission rate in Fig-

ure 1. That is, the nature of asymmetry depends on whether we model virus mutation via

an anticipated change or a two-state Markov process.

Figure 4: Optimal Lockdown Policy under a Two-State Markov Process:
Transmission Rate (β)
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Note: This figure plots the simulated path of lockdown intensity αt under a constant transmission rate β and
under a two-state Markov process for β. In the benchmark (black solid line), β = 1.00 throughout. In the
two-state Markov cases, β starts at 1.00 and, from t = 0, can switch to an alternative (absorbing) state with
per-period transition probability p2 = 0.025; after switching, β remains at the new level. The legend reports
the alternative-state value. In the realizations shown, the switch occurs at T = 40. Panel (i) compares
β : 1.00 → 0.75 (blue dashed) and β : 1.00 → 1.25 (red dashed); panel (ii) compares β : 1.00 → 0.50 (blue
solid) and β : 1.00 → 1.50 (red solid); panel (iii) compares β : 1.00 → 0.25 (blue dotted) and β : 1.00 → 1.75
(red dotted). All simulations start from the same initial condition and differ only in the assumed process for
β.
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Table 3: Cumulative Lockdown Intensity under a Two-State Markov Process:
Transmission Rate (β)

β : 1.00 → 0.25 β : 1.00 → 0.50 β : 1.00 → 0.75 constant β β : 1.00 → 1.25 β : 1.00 → 1.50 β : 1.00 → 1.75

13.9 5.4 4.1 3.4 2.5 1.9 1.5

Note: This table reports cumulative lockdown intensity, defined as
∑

t αt over the sample period, under a
constant transmission rate β and six two-state Markov cases for β. In the benchmark constant-parameter
case, β = 1.00. In the two-state Markov cases, β starts from 1.00 and, from t = 0, can switch to an
alternative (absorbing) state with per-period transition probability p2 = 0.025. The alternative-state value
is 0.25, 0.50, 0.75, 1.25, 1.50, or 1.75, as indicated by the column headings. In the realizations summarized
here, the switch occurs at T = 40; after switching, β remains at the new level. All simulations start from
the same initial condition and differ only in the assumed process for β.

3.3 A Three-State Markov Process

In this exercise, we examine the implications of mutation uncertainty for optimal lockdown

policy. We do so by comparing (i) the economy with a constant transmission rate (the

economy without mutation uncertainty) and (ii) the economy in which the transmission rate

follows a three-state Markov process with an absorbing state (the economy with mutation

uncertainty).

Figure 5 shows the results. In the figure, solid black and red lines are for the economy

without and with uncertainty. According to the figure, uncertainty is not neutral. In partic-

ular, it is optimal for the government to impose a more stringent lockdown in the presence

of mutation uncertainty than in its absence. Non-neutrality of uncertainty—or breakdown

of certainty equivalence—makes sense in light of the asymmetry discussed in the previous

two models.
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Figure 5: The Effects of Mutation Uncertainty on Optimal Lockdown Policy:
Transmission Rate (β)
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Note: The black line (without uncertainty) shows the benchmark case with a constant transmission rate at
β = 1.00. The red line (with uncertainty) shows a specific realization of the three-state Markov model in
which β starts from 1.00 and, from t = 0, can switch in any period to the high state (β = 1.50) or the low
state (β = 0.50) with per-period transition probability p3 = 0.0125. In the realization shown, β = 1 over the
entire horizon. All simulations start from the same initial condition and differ only in the assumed process
for β.

Why does the government reduce—as opposed to increase—lockdown intensity in the

presence of uncertainty? To answer this question, it is useful to consider two types of

mistakes the government could face in this model with a three-state Markov shock. The first

type of mistake is that the government intensifies lockdown, focusing on the possible future

decline in the transmission rate, but the transmission rate ends up increasing in the future.

The second type of mistake is the opposite: the government relaxes lockdown, focusing on the

possible future increase in the transmission rate, but the transmission rate ends up declining

in the future.

The first mistake turns out to be more costly than the second mistake. In the first mistake,

when the transmission rate increases at some point in the future, the government has already

incurred economic costs that are substantially larger than in the constant-parameter case.

Furthermore, once the transmission rate increases, there will be a large number of deaths

from that point on because there are many susceptible people left due to a stringent lockdown

up to that point. In the second mistake, when the transmission rate declines at some point in

the future, the government has allowed infections and infection-induced deaths to rise more
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than in the constant-parameter case. Once the transmission rate declines, there will not be

many additional deaths from that point on because the number of susceptible people has

already declined by a large amount. All told, the first mistake is associated with substantially

higher economic costs without necessarily leaping much gain in terms of cumulative deaths

than in the constant-parameter case, whereas the second mistake is associated with some

reduction in economic costs without necessarily implying substantially higher costs in terms

of cumulative deaths than in the constant-parameter case.

4 Conclusion

In this paper, we examined the implications of virus mutation for optimal lockdown policy in

an epi-macro model. We considered three ways of modelling virus mutation—a deterministic

setup and two stochastic setups featuring a two-state or three-state Markov process. We

highlighted the following takeaways. First, the effects of virus mutation are asymmetric. In

particular, in both the model with an anticipated shock at a fixed date and the model with

a two-state Markov shock, we saw that a future reduction in the transmission rate increases

lockdown intensity by more than a future rise in the transmission rate lowers it. Second, as a

corollary to this asymmetry, an increase in uncertainty about future mutation is non-neutral

and reduces lockdown intensity under the optimal policy.

We focused on a particular type of uncertainty in this paper. In reality, the government

faces a myriad of uncertainties in a pandemic. The government may be uncertain about

data, the appropriate model, and its citizens’ priority over lives versus livelihoods. As

discussed in the introduction, some researchers have analyzed the implications of uncertainty

for the conduct of lockdown policy, but such research is still limited in its number. Further

research on this issue is likely to provide invaluable insights to future policymakers in the

next pandemic.
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Online Appendices

A Solution Methods

A.1 Model with an Anticipated Parameter-Change

We employ a brute-force (direct) optimization approach that treats the period-by-period

lockdown intensity sequence as the object of choice. The method fixes a finite horizon

and optimizes the lockdown intensity in each period jointly, rather than computing a state-

contingent policy rule over the full state space.

The algorithm proceeds in two main steps: (i) forward simulation, where for a given

candidate period-by-period lockdown intensity sequence we simulate the SIRD dynamics

period by period starting from an initial condition and obtain the implied trajectory of

health outcomes, and (ii) sequence update, where we minimize the discounted objective over

the period-by-period lockdown intensity sequence using a gradient method with automatic

differentiation subject to feasibility. After each update, we enforce the lockdown bounds by

projecting each period’s lockdown intensity back to the admissible interval.

A.2 Model with a Two- and Three-State Markov Process

We solve the stochastic model by policy function iteration on a discretized state space x =

(θ, I, R +D), where θ ∈ {β, γ, δ}. The control is the lockdown intensity α ∈ [0, 1]. Given a

candidate policy π(x), we perform policy evaluation by iterating the policy-specific Bellman

operator until the value function V π converges. The continuation value is computed by

taking expectations over θ′ using the Markov transition matrix and interpolating V π on

the (θ, I, R + D) grid at the implied next state. We then conduct policy improvement by

maximizing the Bellman objective over a discretized grid for α at each state node, updating

π. We iterate evaluation and improvement until convergence.

B Recovery and Fatality Rates

In the main body of the paper, we focused on the transmission rate. All the key takeaways

are robust to allowing mutation that leads to a change in the recovery and fatality rate.
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Table 4: Cumulative Lockdown Intensity under an Anticipated Change at T = 40
Recovery Rate (γ)

γ : 7/18 → 2/18 γ : 7/18 → 4/18 γ : 7/18 → 6/18 constant γ γ : 7/18 → 8/18 γ : 7/18 → 10/18 γ : 7/18 → 12/18

0.5 1.8 2.9 3.4 4.0 6.6 10.3

Note: This table reports cumulative lockdown intensity, defined as
∑

t αt over the sample period, under a
constant recovery rate γ and six scenarios with an anticipated change in γ at T = 40. In the benchmark,
γ = 7/18 throughout. In the anticipated-change cases, γ starts from 7/18 and, in the realization summarized
here, changes at T = 40 from 7/18 to 2/18, 4/18, 6/18, 8/18, 10/18, or 12/18 as indicated by the column
headings; after the change, γ remains at the new level. All simulations start from the same initial condition
and differ only in the assumed path of γ.

Table 5: Cumulative Lockdown Intensity under a Two-State Markov Process:
Recovery Rate (γ)

γ : 7/18 → 2/18 γ : 7/18 → 4/18 γ : 7/18 → 6/18 constant γ γ : 7/18 → 8/18 γ : 7/18 → 10/18 γ : 7/18 → 12/18

0.0 1.2 2.7 3.4 3.7 4.4 5.0

Note: This table reports cumulative lockdown intensity, defined as
∑

t αt over the sample period, under a
constant recovery rate γ and six two-state Markov cases for γ. In the benchmark, γ = 7/18 throughout. In
the two-state Markov cases, γ starts from 7/18 and, from t = 0, can switch to an alternative (absorbing)
state with per-period transition probability p2 = 0.025. The alternative-state value is 2/18, 4/18, 6/18,
8/18, 10/18, or 12/18, as indicated by the column headings. In the realizations summarized here, the switch
occurs at T = 40; after switching, γ remains at the new level. All simulations start from the same initial
condition and differ only in the assumed process for γ.

Table 6: Cumulative Lockdown Intensity under an Anticipated Change at T = 40
Fatality Rate (δ)

δ : 0.010 → 0.003 δ : 0.010 → 0.005 δ : 0.010 → 0.007 constant δ δ : 0.010 → 0.013 δ : 0.010 → 0.015 δ : 0.010 → 0.017

12.47 4.00 3.68 3.40 3.21 3.11 3.03

Note: This table reports cumulative lockdown intensity, defined as
∑

t αt over the sample period, under a
constant fatality rate δ and six scenarios with an anticipated change in δ at T = 40. In the benchmark,
δ = 0.01 throughout. In the anticipated-change cases, δ starts from 0.01 and, in the realization summarized
here, changes at T = 40 from 0.01 to 0.003, 0.005, 0.007, 0.013, 0.015, or 0.017 as indicated by the column
headings; after the change, δ remains at the new level. All simulations start from the same initial condition
and differ only in the assumed path of δ.
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Table 7: Cumulative Lockdown Intensity under a Two-State Markov Process:
Fatality Rate (δ)

δ : 0.010 → 0.003 δ : 0.010 → 0.005 δ : 0.010 → 0.007 constant δ δ : 0.010 → 0.013 δ : 0.010 → 0.015 δ : 0.010 → 0.017

3.97 3.58 3.42 3.40 3.19 3.18 3.18

Note: This table reports cumulative lockdown intensity, defined as
∑

t αt over the sample period, under a
constant fatality rate δ and six two-state Markov cases for δ. In the benchmark, δ = 0.01 throughout. In the
two-state Markov cases, δ starts from 0.01 and, from t = 0, can switch to an alternative (absorbing) state
with per-period transition probability p2 = 0.025. The alternative-state value is 0.003, 0.005, 0.007, 0.013,
0.015, or 0.017, as indicated by the column headings. In the realizations summarized here, the switch occurs
at T = 40; after switching, δ remains at the new level. All simulations start from the same initial condition
and differ only in the assumed process for δ.

C Robustness Analyses

This appendix examines the sensitivity of our main results to the assumption regarding the

relative productivity of infected individuals, ωI . In our benchmark analysis, we set ωI =

0.8, assuming that those infected are slightly less productive than susceptible or recovered

individuals.

The primary takeaway from Tables 8 and 9 is that the optimal lockdown policy is re-

markably robust to variations in this parameter. Whether we assume infected individuals

lose all productivity ωI = 0.0 or remain as productive as healthy individuals ωI = 1.0, the

cumulative lockdown intensity
∑

αt remains nearly identical across all scenarios. This sug-

gests that the government’s decision is primarily driven by the transmission dynamics βt

and the associated health costs, rather than the marginal loss in labor productivity of the

currently infected.
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Table 8: Cumulative Lockdown Intensity under an Anticipated change at T = 40:
Transmission Rate (β)—Alternative Values for ωI—

ωI β : 1.00 → 0.25 β : 1.00 → 0.50 β : 1.00 → 0.75 constant β β : 1.00 → 1.25 β : 1.00 → 1.50 β : 1.00 → 1.75

0.0 14.1 12.3 4.7 3.5 2.8 2.3 1.9

0.2 14.1 12.3 4.7 3.5 2.8 2.3 1.9

0.4 14.1 12.4 4.7 3.5 2.8 2.3 1.9

0.6 14.1 12.4 4.6 3.4 2.8 2.3 1.9

0.8 14.1 12.4 4.7 3.4 2.8 2.3 1.9

1.0 14.1 12.4 4.7 3.4 2.7 2.3 1.9

Note: This table reports cumulative lockdown intensity over the sample period, defined as
∑

t αt. Rows
vary ωI , while columns vary the (anticipated) path of the transmission rate β. The benchmark case keeps
β = 1.00 throughout (“constant β”). In the anticipated-change scenarios, β equals 1.00 up to T = 40
and then changes to the value indicated by the column heading (0.25, 0.50, 0.75, 1.25, 1.50, or 1.75); after
T = 40, β remains at the new level. All simulations start from the same initial condition and differ only in
the assumed path of β.

Table 9: Cumulative Lockdown Intensity under the Two-State Markov Model:
Transmission Rate (β)—Alternative Values of ωI—

ωI β : 1.00 → 0.25 β : 1.00 → 0.50 β : 1.00 → 0.75 constant β β : 1.00 → 1.25 β : 1.00 → 1.50 β : 1.00 → 1.75

0.0 13.8 5.4 4.2 3.5 2.6 2.0 1.6

0.2 13.8 5.4 4.2 3.5 2.6 2.0 1.5

0.4 13.9 5.4 4.2 3.5 2.5 2.0 1.5

0.6 13.9 5.5 4.1 3.4 2.5 1.9 1.5

0.8 13.9 5.4 4.1 3.4 2.5 1.9 1.5

1.0 14.0 5.5 4.1 3.4 2.5 1.9 1.5

Note: This table reports cumulative lockdown intensity over the sample period, defined as
∑

t αt. Rows
vary ωI , while columns vary assumptions about the transmission rate process for β. The benchmark case
keeps β = 1.00 throughout (“constant β”). In the six two-state Markov cases, β starts at 1.00 and, from
t = 0, can switch to an alternative absorbing state with per-period transition probability p2 = 0.025. The
alternative-state value is 0.25, 0.50, 0.75, 1.25, 1.50, or 1.75, as indicated by the column headings. In the
realizations summarized here, the switch occurs at T = 40; after switching, β remains at the new level. All
simulations start from the same initial condition and differ only in the assumed process for β.
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